
NeoFS Technical Specification

Architecture and Implementation details

Neo Saint Petersburg Competence Center

Date: November 14, 2023
Revision: c57acefc

NeoFS Technical Specification Revision: c57acefc

Contents

Introduction 9
Overview . 9
Background . 10
Technical Requirements . 10
Out of Scope . 10
Future Goals . 10

Architecture overview 11
Design and components . 11
Epoch . 13
Network Map . 13
Storage Policy . 14

Filters . 15
Selectors . 16
Replicas . 16
Container Backup Factor . 16

Objects . 17
Large objects split . 17
Object Deletion . 19
Tombstone Object . 20
Containers . 20
Access Control Lists . 21

Basic ACL . 21
Extended ACL . 25
Bearer Token . 29
ACL check algorithm . 30

Reputation system . 32
Trust . 32
Algorithm . 32
Subjects and Objects of Trust in NeoFS . 33

Inner Ring Nodes 34

Storage Nodes 35
Address format . 35

Examples: . 35

Neo Saint Petersburg Competence Center 2

NeoFS Technical Specification Revision: c57acefc

Garbage Collector . 35
Invalid Objects check . 36
Marked Objects removal . 36
Object Expiration . 36

Notifications . 37
Object notifications . 37

Protocol gateways 38
HTTP . 38
S3 . 38

Access Box scheme . 38
sFTP . 39

Data Audit 40
Storage Groups . 40
Data Audit cycle . 41
Data Audit Game . 41

Audit tasks distribution . 42
Data Audit session . 43
Prove-of-Retrievability . 44
Prove-of-Placement . 44
Prove-of-Data-Possession . 44
Hash check . 45

Blockchain components 47
Role of blockcahin in the storage system . 47
Mainchain and sidechain . 47
Notary service . 48
NeoFS Sidechain Governance . 49

Alphabet contracts . 49
Alphabet Inner Ring nodes . 49
Alphabet contracts invocation . 50
Utility token distribution . 51
Changing sidechain validators . 52
Changing the Inner Ring list . 52

NeoFS Smart Contracts . 56
alphabet contract . 56
audit contract . 58
balance contract . 59

Neo Saint Petersburg Competence Center 3

NeoFS Technical Specification Revision: c57acefc

container contract . 64
neofs contract . 68
neofsid contract . 73
netmap contract . 75
processing contract . 78
proxy contract . 79
reputation contract . 80
subnet contract . 82

Balance transfer details encoding . 85

Reputationmodel 87
Configuration . 87
Managers . 87

Defining a manager for a node . 88
Local Trust . 88

Subject and Object of a trust . 88
Calculating trust . 89
Transport . 89

Global Trust . 90
Subject and Object of a trust . 90
Calculating trust . 90
Transport . 91

Incentivemodel 92
Data storage payments . 92

Basic income . 92
Data audit . 94

Service fees . 94
Container creation fee . 94
Audit result fee . 94
Inner Ring candidate fee . 95
Withdraw fee . 95

NeoFS API v2 96
Nodes and their identification . 96
Requests and Responses . 97
Signing RPCmessages and data structures . 97
Stable serialization . 97
Signature generation format . 98

Neo Saint Petersburg Competence Center 4

NeoFS Technical Specification Revision: c57acefc

Signature chaining in requests and responses . 99
Message body signature . 100
Meta header signature . 101
Verification header signature . 101

Container service signatures . 102
Object service and Session signatures . 103
neo.fs.v2.accounting . 104

Service “AccountingService” . 104
Method Balance . 104
Message Decimal . 105

neo.fs.v2.acl . 105
Message BearerToken . 105
Message BearerToken.Body . 105
Message BearerToken.Body.TokenLifetime . 106
Message EACLRecord . 106
Message EACLRecord.Filter . 107
Message EACLRecord.Target . 108
Message EACLTable . 108
Emun Action . 108
Emun HeaderType . 109
Emun MatchType . 109
Emun Operation . 109
Emun Role . 110

neo.fs.v2.audit . 110
Message DataAuditResult . 110

neo.fs.v2.container . 112
Service “ContainerService” . 112
Method Put . 112
Method Delete . 113
Method Get . 113
Method List . 114
Method SetExtendedACL . 115
Method GetExtendedACL . 115
Method AnnounceUsedSpace . 116
Message AnnounceUsedSpaceRequest.Body.Announcement 117
Message Container . 117
Message Container.Attribute . 118

Neo Saint Petersburg Competence Center 5

NeoFS Technical Specification Revision: c57acefc

neo.fs.v2.lock . 119
Message Lock . 119

neo.fs.v2.netmap . 119
Service “NetmapService” . 119
Method LocalNodeInfo . 119
Method NetworkInfo . 120
Method NetmapSnapshot . 120
Message Filter . 121
Message Netmap . 121
Message NetworkConfig . 121
Message NetworkConfig.Parameter . 122
Message NetworkInfo . 122
Message NodeInfo . 122
Message NodeInfo.Attribute . 123
Message PlacementPolicy . 125
Message Replica . 125
Message Selector . 126
Emun Clause . 126
Emun NodeInfo.State . 126
Emun Operation . 127

neo.fs.v2.object . 127
Service “ObjectService” . 127
Method Get . 127
Method Put . 129
Method Delete . 130
Method Head . 131
Method Search . 132
Method GetRange . 132
Method GetRangeHash . 134
Message GetResponse.Body.Init . 135
Message HeaderWithSignature . 135
Message PutRequest.Body.Init . 135
Message Range . 136
Message SearchRequest.Body.Filter . 136
Message Header . 138
Message Header.Attribute . 138
Message Header.Split . 139
Message Object . 140

Neo Saint Petersburg Competence Center 6

NeoFS Technical Specification Revision: c57acefc

Message ShortHeader . 140
Message SplitInfo . 141
Emun MatchType . 141
Emun ObjectType . 142

neo.fs.v2.refs . 142
Message Address . 142
Message Checksum . 143
Message ContainerID . 143
Message ObjectID . 144
Message OwnerID . 144
Message Signature . 145
Message SignatureRFC6979 . 145
Message SubnetID . 145
Message Version . 145
Emun ChecksumType . 146
Emun SignatureScheme . 146

neo.fs.v2.reputation . 146
Service “ReputationService” . 146
Method AnnounceLocalTrust . 147
Method AnnounceIntermediateResult . 147
Message GlobalTrust . 148
Message GlobalTrust.Body . 148
Message PeerID . 149
Message PeerToPeerTrust . 149
Message Trust . 149

neo.fs.v2.session . 150
Service “SessionService” . 150
Method Create . 150
Message ContainerSessionContext . 150
Message ObjectSessionContext . 151
Message RequestMetaHeader . 151
Message RequestVerificationHeader . 152
Message ResponseMetaHeader . 152
Message ResponseVerificationHeader . 153
Message SessionToken . 153
Message SessionToken.Body . 153
Message SessionToken.Body.TokenLifetime . 154
Message XHeader . 154

Neo Saint Petersburg Competence Center 7

NeoFS Technical Specification Revision: c57acefc

Emun ContainerSessionContext.Verb . 155
Emun ObjectSessionContext.Verb . 155

neo.fs.v2.status . 156
Message Status . 156
Message Status.Detail . 156
Emun CommonFail . 157
Emun Container . 157
Emun Object . 157
Emun Section . 158
Emun Session . 158
Emun Success . 159

neo.fs.v2.storagegroup . 159
Message StorageGroup . 159

neo.fs.v2.subnet . 160
Message SubnetInfo . 160

neo.fs.v2.tombstone . 160
Message Tombstone . 160

Terms and definitions 161

Glossary 161

Neo Saint Petersburg Competence Center 8

NeoFS Technical Specification Revision: c57acefc

Introduction

Overview

NeoFS is a decentralized distributed object storage system integrated with the Neo Blockchain1.

We storeanddistributeusers’ dataacross apeer-to-peernetworkofNeoFSNodes. Whether abusiness
or an individual, any Neo user may join the network and get paid for providing storage resources to
others, or pay a competitive price to employ NeoFS as a storage solution.

The decentralized architecture and flexible storage policies allow users to reliably store object data
in the NeoFS network. Each NeoFS Node is responsible for executing the specific storage policies
selected by the user, including the geographical location, redundancy level, number of nodes, type of
disk, capacity, etc. Thus, NeoFSenables a transparent dataplacementprocesswhichgives full control
over data to the users.

Deep Neo Blockchain2 integration allows NeoFS to be used by Decentralized Applications (dApps) di-
rectly from NeoVM3 on the Smart Contract4 code level. As a result, dApps are not limited to on-chain
storage and one canmanipulate large amounts of data without paying a prohibitive price.

NeoFS provides native gRPC5 Application Programming Interface (API) and supports popular protocol
gateways such as AWSS36, HTTP7, FUSE8, and sFTP9, which allows developers to easily integrate their
existing applications without rewriting code.

Together, this set of features makes it possible to utilize a dApp’s Smart Contract to manage mone-
tary assets and obtain data access permissions on NeoFS through a regular Web Browser or a mobile
application.

1https://neo.org
2https://neo.org
3https://docs.neo.org/docs/en-us/basic/technology/neovm.html
4https://docs.neo.org/docs/en-us/basic/technology/neocontract.html
5https://grpc.io
6https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
7https://wikipedia.org/wiki/Hypertext_Transfer_Protocol
8https://wikipedia.org/wiki/Filesystem_in_Userspace
9https://en.wikipedia.org/wiki/SSH_File_Transfer_Protocol

Neo Saint Petersburg Competence Center 9

https://neo.org
https://neo.org
https://docs.neo.org/docs/en-us/basic/technology/neovm.html
https://docs.neo.org/docs/en-us/basic/technology/neocontract.html
https://grpc.io
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://wikipedia.org/wiki/Filesystem_in_Userspace
https://en.wikipedia.org/wiki/SSH_File_Transfer_Protocol

NeoFS Technical Specification Revision: c57acefc

Background

Technical Requirements

Out of Scope

Future Goals

Neo Saint Petersburg Competence Center 10

NeoFS Technical Specification Revision: c57acefc

Architecture overview

Design and components

NeoFS heavily relies on the Neo Blockchain and its features. This allows NeoFS nodes to focus on
their primary tasks — data storage and processing, while asset management and distributed system
coordination are left to Neo and a set of Smart Contracts. Under this approach, the Blockchain is
mainly used as a trusted source of truth and coordination data.

Neo ID

NeoFS ID

Neo Smart Contracts

S3

NeoFS GatewaysFUSE

sFTP

HTTP

File system

SSH client
Web browser

S3 client

dApps

NeoFS Inner Ring Nodes

Neo 3.0 Blockchain

NeoFS Neo 3.0 Sidechain
NeoFS Storage Nodes

Figure 1: Architecture overview

The N3 Main Net hosts a NeoFS Native Contract10 concerned with user deposits and withdrawals, net-
work settings, and other maintenance operations such as listing the keys of trusted nodes.

10https://medium.com/neo-smart-economy/native-contracts-in-neo-3-0-e786100abf6e

Neo Saint Petersburg Competence Center 11

https://medium.com/neo-smart-economy/native-contracts-in-neo-3-0-e786100abf6e

NeoFS Technical Specification Revision: c57acefc

To simplify accounting operations, lessen Main Net burden, and reduce the overall network main-
tenance costs, NeoFS utilizes an N3-based sidechain11. The NeoFS Sidechain runs Smart Contracts
which control the NeoFS network structure, user settlements, balances, and other frequently chang-
ing data.

There are two types of NeoFS nodes. They are Storage nodes and Inner Ring nodes.

The first type is responsible for receiving data from a user, reliably storing it as required by the storage
policy, and providing access to the data according to the applicable Access Control Lists (ACLs). Such
storage nodes are coordinated with Smart Contracts from the Sidechain.

The second type does not store user data. Inner Ring nodes monitor the NeoFS network health, ag-
gregate Storage Nodes reputation ratings, and perform data auditing, issuing penalties and bounties
depending on the audit results. Inner Ring nodes listen for both Main Net and Sidechain, providing a
trusted and reliable way of data synchronization between the two Blockchains.

Each Storage node in the system has a set of key-value attributes describing node properties such as
it’s geographical location, reputation rating, number of replicas, number of nodes, presence of SSD
drives, etc. InnerRingnodesgenerateaNetworkMap—amulti-graphstructurewhichenablesStorage
nodes to be selected and grouped based on those attributes.

In NeoFS, a user puts files in a container. This container is similar to a folder in a file system or a
bucket in AWS S3, but with a storage policy attached. The Storage Policy is defined by the user in an
SQL-like language (NetmapQL), specifying how and where objects in the container have to be stored
by selecting nodes based on their attributes. Storage nodes keep data in accordance with the policy,
otherwise they do not get paid for their service.

All storage nodes service fees are paid in GAS Utility Token. After receiving GAS, a node operator may
spend them to pay for their own data backups on other NeoFS nodes, or simply withdraw it for use
with other services provided by the Neo Blockchain ecosystem.

An innovative feature of NeoFS is that it can be accessed directly from NeoVM on the smart contract
code level. Thanks to the N3Oracle protocol and the integration betweenNeoFS andNeo Blockchain,
dApps are not limited to on-chain storage and can manipulate large amounts of data without paying
a prohibitive price for it.

NeoFS provides native gRPC API and supports the most popular protocol gateways, allowing easy
integration with other systems and applications without requiring code rewrites.

Such an architecturemakes it possible to implement a dApp’s smart contract tomanage digital assets
and data access permissions on NeoFS and lets users access that data via regular Web Browsers or
mobile applications. In the long term, we plan to addmore ecosystem components that will facilitate

11https://en.wikipedia.org/wiki/Blockchain#Types

Neo Saint Petersburg Competence Center 12

https://en.wikipedia.org/wiki/Blockchain#Types

NeoFS Technical Specification Revision: c57acefc

the development of truly decentralized applications, solving almost any problems that are nowadays
only possible in a centralized manner.

Epoch

For the NeoFS network to work properly, all nodes should have the same view of the network. This
snapshot view must be tied to some timestamp, but in the distributed environment for NeoFS there
is no reliable common source of time other then a monotonically increasing number of blocks in the
Blockchain. It means we can only use discrete timemodel12 and define some time period in blocks to
snapshot the common view of the network. This period has to be small enough to keep the snapshot
information fresh and big enough to let the information be distributed fast enough between network
nodes. This regular time period is called Epoch.

During an Epoch all common information snapshots are immutable. New nodes can be registered,
misbehaving nodes can be removed, some nodes can go offline, but those changes will be reflected
only in the next version of the netmap issued for the next Epoch. All these changes signed by Inner
Ring are propagated to the network only when the new Epoch starts.

Network Map

NeoFS Network Map, or just “netmap”, is a structured representation of all active storage nodes avail-
able in NeoFS network for the current Epoch.

Storage nodes in the netmap are identified by public key. Netmap also has additional information
about each node, like network addresses and a list of attributes.

Attributes are key-value pairs with string values. Depending on the Attribute, the string value can
be interpreted as a number or Hex or something else. For detailed information please see the API
reference.

Here is how node information in netmapmay look like:

key: 03e9c4847fb2f4d58161a808ff74363139c4e617cb233a2e96cc6c4c7f219dd9bf
address: /dns4/st1.storage.fs.neo.org/tcp/8080
state: ONLINE
attribute: Capacity=10000
attribute: Continent=Europe
attribute: Country=Germany
attribute: CountryCode=DE
12https://en.wikipedia.org/wiki/Discrete_time_and_continuous_time

Neo Saint Petersburg Competence Center 13

https://en.wikipedia.org/wiki/Discrete_time_and_continuous_time

NeoFS Technical Specification Revision: c57acefc

attribute: Deployed=NSPCC
attribute: Location=Falkenstein
attribute: Price=0.00000042
attribute: SubDiv=Sachsen
attribute: SubDivCode=SN
attribute: UN-LOCODE=DE FKS

Some node attributes can be grouped (e.g. geographical ones), creating a graph representation for
the networkmap. Strictly speaking it is a forest of rooted treeswhere leaves (single nodes) are shared.
Every tree represents a single attribute group. For example, geographical attributes can be naturally
ordered: Continent, Country, SubDiv, Location, DC (data center) or any other location iden-
tifier.

User attributes can have any name and value. They are used primarily for storage policy rules. For
example, one may want to designate their own nodes with some specific attribute to be sure (with
the help of storage policy) that at least one copy is always stored locally on the nodes one controls.

Storage Policy

In NeoFS, storage policy is a flexible way to specify rules for storing objects. The result of storage
policy rules application to the networkmaps is a set of storage nodes, able to store data according to
the requested policy. This result maybe called “placement”, hence sometimes youmay find the term
“placement policy” used to denote the same thing as the “storage policy”.

BecauseStoragePolicy is attached to the container structure there is a compact definition for system’s
internal use and somehigher level language definitions for humans to use, that are translated to inter-
nal representation. For example, there is an SQL-like language to be used by humans, JSON notation
to be used in software and theremay bemany others, like a graphical language using Blockly13. In our
examples we will use SQL-like notation.

Storage Policy internal definition consists of four parts:

1. Filters
2. Selectors
3. Replicas
4. Container Backup Factor

The result of applying a storage policy to the netmap is a set of nodes structured by Replicas and
used to select candidates to put objects on. The selection algorithm is deterministic, hence on dif-

13https://developers.google.com/blockly

Neo Saint Petersburg Competence Center 14

https://developers.google.com/blockly

NeoFS Technical Specification Revision: c57acefc

ferent nodes or clients the same Storage Policy applied to the same version of netmap will give the
identical result.

Filters

Filter is a mechanism to specify which nodes are allowed to store an object. This is done by querying
node’s attributes and checking if they satisfy certain condition. For example, it allows to precisely
specify “Store objects in nodes from Europe, but not from Italy, which have SSD and have a good
reputation”.

Simple filter can compare a single node attribute with some value.

It has 3 fields:

1. Key—name of node attribute
2. Value— value to compare attribute with
3. Op—operation to be used for comparison

For better understanding, simple filters will be specified as Key Op Value.

For example:

1. Country = Argentina means use nodes for which Country attribute is equal to Ar-
gentina, i.e. nodes located in USA.

2. Rating > 4.5means use nodes with rating better then 4.5

Currently only eight operations are supported, two of which are used for creating compound filters
from the other ones.

1. EQ/NE check if attribute is equal/not equal to the filter’s value.
2. GT/GE/LT/LE check if numerical attribute is greater-than/greater-or-equal/less-than/less-or-

equal than the filter’s value.
3. OR checks if node satisfies at least one of the filters provided as arguments.
4. AND checks if node satisfies all filters provided as arguments.

Compound filter can combine simple filters to specify arbitrarily complex conditions. Consider exam-
ple from the previous section: we may write Country = Argentina AND Rating > 4.5 to
filter nodes which are located in Argentina and have a good rating at the same time.

If filters are used in selectors or other filters, they should have name. Consider filter Country =
Finland OR Country = Iceland AS ColdCountry. If we need nodes from these countries
but want to vary maximum price depending on the storage type they have, wemay write this filter:

Neo Saint Petersburg Competence Center 15

NeoFS Technical Specification Revision: c57acefc

ColdCountry AND StorageType = SSD AND Price < 100
OR
ColdCountry AND StorageType = HDD AND Price < 10

Selectors

Selector is a mechanism to specify which of the previously filtered nodes will be included in the con-
tainer. It has 5 fields:

1. Name—name that can be referred to
2. Attribute— name of the attribute for grouping nodes. When it is set, nodes are grouped in

buckets based on Attribute value. It can be omitted to create buckets “randomly”.
3. Count — number of nodes to be included in a bucket or number of buckets, depending on

Clause.
4. Clause specifies how Count is interpreted:

• SAME— choose nodes from the same bucket
• DISTINCT— choose nodes from distinct buckets

5. Filter — name of the filter to choose nodes from. If it is omitted or is *, all nodes from the
netmap are used.

Selector can return different set of nodes for every epoch; however, they are always the same on each
storage node having the samenetmap. The degree towhich this set of nodes is changed also depends
on how strict the filter is. For example, if we select a few nodes based on a very specific attribute, this
set will always be the same. However, if all these nodes go down, data can be lost.

Replicas

Replica is an independent set of nodes where single object copy is stored. It can refer to selector (by
default all nodes are considered) and can specify a number of copies to store.

Container Backup Factor

Container backup factor (CBF) controls maximum number of nodes to be included in a container’s
node set. It doesn’t set strict boundaries, though. Consider placement policy which selects X nodes
in 2 different countries with CBF 2. In this case, we can expect container’s node set to have from X
to X * 2 nodes in every selected country. Having less than X * 2 nodes is not considered as fail.

Neo Saint Petersburg Competence Center 16

NeoFS Technical Specification Revision: c57acefc

Objects

NeoFS stores all data in the form of objects, thus providing an object-based storage to the clients.
These objects are placed in a flat environment (no hierarchy or directories). To access the required
data, the identifying details (ID andmetadata) are needed.

ObjectID is a hash that equals Headers hashes plus Payload hashes. Any object includes a system
header, extended headers, and a payload. A system header is an obligatory field, while extended
headers may be omitted. However, any extended header should follow a particular structure (e.g. In-
tegrityHeader is a must). A user can add any extended header in the form of a key-value pair, though
keeping in mind that it cannot be duplicated with several values. One attribute – one value. Please
note that any object initially has FileName, so that you cannot create an extended header with it as a
key.

The maximum size for an object is fixed and can be changed only for the whole network in the main
contract. It means that if a file is too heavy, it will be automatically divided into smaller objects. This
smaller parts are put in a container and placed to a StorageNode. Later, they can be assembled to the
initial object. Such assembling is performed in the storage nodes upon a corresponding request for
a linking object. Once your file is converted into an object (or several objects), this object cannot be
changed.

One can define the format of the object in an API Specification. For more information, see API Speci-
fication14.

Large objects split

NeoFS has a limit on the maximal physically stored single object size. If there is a large object ex-
ceeding that MaxObjectSize, it will be split into a series of smaller objects that are logically linked
together.

For each part of the original object’s payload, a separate object with own ObjectIDwill be created.
The large object will not be physically present in the system, but it will be reconstructed from the
object parts when requested.

14https://github.com/nspcc-dev/neofs-api/tree/master/proto-docs

Neo Saint Petersburg Competence Center 17

https://github.com/nspcc-dev/neofs-api/tree/master/proto-docs

NeoFS Technical Specification Revision: c57acefc

Link Object

object_id: ObjectID5

payload: nil

header.split.split_id: f00dcaf3...

header.split.parent: ObjectID4

header.split.parent_signature: ...

header.split.parent_header: ...

header.split.children: ObjectID1

header.split.children: ObjectID2

header.split.children: ObjectID3

Part 1 Object

object_id: ObjectID1

payload: 0xAABB...

header.split.split_id: f00dcaf3...

Part 2 Object

object_id: ObjectID2

payload: 0xCCDD...

header.split.split_id: f00dcaf3...

header.split.previous: ObjectID1

Part 3 Object

object_id: ObjectID3

payload: 0xEEFF...

header.split.split_id: f00dcaf3...

header.split.previous: ObjectID2

header.split.parent: ObjectID4

header.split.parent_signature: ...

header.split.parent_header: ...

Large Object

object_id: ObjectID4

signature: ...

header: ...

payload: 0xAA...CC...EE...

Figure 2: Large object split

All objects participating in the split have the Split headers set. Depending on the place in the split
hierarchy it has different field combinations. There are four possible cases:

• First part
First part object only has thesplit_id field set, as there is nomore information known at this
point

• Middle parts
Middle parts have information about the previous part in previous field in addition to the
split_id

Neo Saint Petersburg Competence Center 18

NeoFS Technical Specification Revision: c57acefc

• Last part
At this point all the information about the object under split is known. Hence the last part con-
tains not only the split_id and previous fields, but also the ObjectID of the original
large object in its parent field, signed ObjectID in parent_signature and original ob-
ject’s Header in parent_header.

• Link object
There are special “Link objects” that have the same common split_id, do not have any
payload, but contain original object’s ObjectID in parent field, it’s signature in par-
ent_signature, original object’s Header in parent_header and the list of all object
parts with payload in repeated children field. Link objects help to speed up the large object
reconstruction and HEAD requests processing. If Link object is lost, the original large object
still will be reconstructed from its parts, but it will require more actions from NeoFS nodes.

All of the split hierarchy objectsmaybephysically storedondifferent nodes. During reconstruction, at
first the link object or the last part objectwill be found. If it’s a HEAD request, the link object or the last
part object will have all the information required to return the original large object’s HEAD response.
For aGET request, thepayloadwill be taken frompart objects listed in thesplit.childrenheader.
As they are ordered, it will be possible to begin streaming the payload as soon as the first part object
becomes available. If Link object is lost, some additional time will be spent on reconstructing the list
from split.previous header fields.

If the whole payload is available, a large object may be split on the client side using local tools like
neofs-cli. In this case the resulting object set will be signed with user’s key. Such a split type can
be called a “Static split”.

When the largeobject’s payload is not fully available right away, or it is toobig tobe split locally, theob-
ject upload can be started in a Session with another NeoFS node and be streamed in a PUT operation,
part by part. Object parts will be automatically created as soon as the payload hits theMaxObjectSize
limit. In this case, the resulting object set will be signed with a session key signed by user’s key. This
split type can be called a “Dynamic split”.

Object Deletion

It’s hard to guarantee complete and immediate object removal in a distributed system with eventual
consistency. If some nodes are offline at the time of DELETE request processing, the object may still
be available there and would be replicated to other nodes.

To address this issue, NeoFS Storage nodes don’t remove objects immediately, but place a removal
mark in a form of a Tombstone object. In order to avoid wasting storage space on the information

Neo Saint Petersburg Competence Center 19

NeoFS Technical Specification Revision: c57acefc

about data that has been already put into trash, tombstones are to be removed later by Garbage Col-
lector.

Tombstone Object

Along with a Regular Object and a Storage Group, there is a Tombstone object type. It is like a regular
object, but the payload contains a tombstone data structure. This entity is intended to synchronize
object removal in a distributed system working in an unreliable environment. When one removes an
Object, NeoFS Storage node actually creates a Tombstone alongside it and replicates the Tombstone
among the Container nodes.

A Tombstone indicates that the given ObjectID does not exist any more and all requests to it must
fail. Storage nodes may keep the data for a while until the Garbage Collector reaps it; though, it’s up
to the node’s settings and implementation.

After several Epochs, we assume that deletion event has been properly spread among all Storage
Nodes serving the Container, including those which haven’t received it “in time” because of outage
or lack of network connectivity.

The time to keep the tombstone may be varying. It is set in __NEOFS__EXPIRATION_EPOCH
object attribute and expiration_epoch field in Tombstone structure. It may be set by a user
directly or by an intermediate NeoFS Storage node using the default value. While the __NE-
OFS__EXPIRATION_EPOCH attribute is optional for a Regular Objects, it is obligatory for a
Tombstone Object type.

Containers

In NeoFS, objects are put into containers and stored therein.

Fromtheuser’s point of view, thereare six verbsapplicable for aContainer: PUT,GET,DELETE,LIST,
SetEACL and GetEACL. Also, there is an AnnounceUsedSpace operation which is intended for
internalNeoFS synchronization. OnanexistingContainer, anyuser is allowed tomakeGET,LIST and
GetEACL.DELETEandSetEACLareallowedonly for aContainerowner, disregardingof aContainer
basic or extended ACL.

Any container has attributes, which are actually Key-Value pairs containing metadata. There is a cer-
tain number of attributes set authomatically, but users can add attributes themselves. Note that at-
tributes must be unique and have non-empty value. It means that it’s not allowed to set - two or
more attributes with the same key name (eg. Size=small, Size=big); - empty-value attributes
(eg. Size=''). Containers with duplicated attribute names or empty values will be considered in-
valid.

Neo Saint Petersburg Competence Center 20

NeoFS Technical Specification Revision: c57acefc

Access Control Lists

Access control in a decentralized untrusted environment is a complicated problem. It must be verifi-
able by every network participant and still be open for changes to revoke unwanted access permis-
sions or adjust to infrastructure changes.

NeoFS solves this by using ACL rules from the combination of sources:

• Basic ACL in the container structure,
• BearerToken ACL rules in the request,
• Extended ACL rules in the SideChain smart contract.

ACLs specifies a set of actions that a particular user or a group of users can do with objects in the
container. Each request coming through a storage node gets verified against those rules and rejected
if the requests’s action is not allowed.

Basic ACL

Basic ACL is a part of the container structure, and it is always created simultaneously with the con-
tainer. Therefore, it is never subject to any changes. It is a 32-bit integerwith a bit field in the following
format:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

8 7 6 5 4 3 2 1

0 0 0 1 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0

U S O B U S O B U S O B U S O B U S O B U S O B U S O B

b
its

n
ib

b
le

s

GetRangeHash GetRange Search Delete Put Head GetX FRSRV

ve
rb

d
e

fa
u

lt
ro

le
s

Reserved or ignored Can't be changed Can be set by user

Figure 3: BasicACL bit field

SymbolMeaningDescription

B Bearer Allows using Bear Token ACL rules to replace eACL rules

U User The owner of the container identified by the public key linked to the container

Neo Saint Petersburg Competence Center 21

NeoFS Technical Specification Revision: c57acefc

SymbolMeaningDescription

S System Inner Ring and/or container nodes in the current version of network map

IR nodes can only perform Get, GetRangeHash, Head, and Search
necessary for data audit.

Container nodes can only do verbs required for the replication. i.e., Get, Put,
Head, Search and GetRangeHash.

O Others Clients that do not match any of the categories above

F Final Flag denying Extended ACL. If set, Basic ACL check is final, Extended ACL is
ignored

X Sticky Flag denying different owners of the request and the object

If set, object in Put request must have one Owner and be signed with the same
signature

If not set, the object must be correct but can be of any owner.

The nodes falling for SYSTEM role are exception from this rule. For them the bit
is ignored.

0 Deny Denies operation of the identified category

1 Allow Allows operation of the identified category

Basic ACL was designed to be processed and verified really fast. It’s simple enough, but covers the
majority of access restriction use cases, especially when combined with a carefully tailored Storage
Policy.

There are well-known Basic ACLs:

Final – with a flag denying Extended ACL:

private: 0x1C8C8CCC

Neo Saint Petersburg Competence Center 22

NeoFS Technical Specification Revision: c57acefc

1 C 8 C 8 C C C

0 0 0 1 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0

U S O B U S O B U S O B U S O B U S O B U S O B U S O B

b
its

n
ib

b
le

s

GetRangeHash GetRange Search Delete Put Head GetX FRSRV

ve
rb

ro
le

s

Figure 4: Basic ACL private

public-read: 0x1FBF8CFF

1 F B F 8 C F F

0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1

U S O B U S O B U S O B U S O B U S O B U S O B U S O B

b
its

n
ib

b
le

s

GetRangeHash GetRange Search Delete Put Head GetX FRSRV

ve
rb

ro
le

s

Figure 5: Basic ACL public-read

public-read-write: 0x1FBFBFFF

1 F B F B F F F

0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

U S O B U S O B U S O B U S O B U S O B U S O B U S O B

b
its

n
ib

b
le

s

GetRangeHash GetRange Search Delete Put Head GetX FRSRV

ve
rb

ro
le

s

Figure 6: Basic ACL public-read-write

public-append: 0x1FBF9FFF

Neo Saint Petersburg Competence Center 23

NeoFS Technical Specification Revision: c57acefc

1 F B F 9 F F F

0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

U S O B U S O B U S O B U S O B U S O B U S O B U S O B

b
its

n
ib

b
le

s

GetRangeHash GetRange Search Delete Put Head GetX FRSRV

ve
rb

ro
le

s

Figure 7: Basic ACL public-append

Non-final – Extended ACL can be set:

eacl-private: 0x0C8C8CCC

0 C 8 C 8 C C C

0 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0

U S O B U S O B U S O B U S O B U S O B U S O B U S O B

b
its

n
ib

b
le

s

GetRangeHash GetRange Search Delete Put Head GetX FRSRV

ve
rb

ro
le

s

Figure 8: Basic ACL eacl-private

eacl-public-read: 0x0FBF8CFF

0 F B F 8 C F F

0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1

U S O B U S O B U S O B U S O B U S O B U S O B U S O B

b
its

n
ib

b
le

s

GetRangeHash GetRange Search Delete Put Head GetX FRSRV

ve
rb

ro
le

s

Figure 9: Basic ACL eacl-public-read

eacl-public-read-write: 0x0FBFBFFF

Neo Saint Petersburg Competence Center 24

NeoFS Technical Specification Revision: c57acefc

0 F B F B F F F

0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

U S O B U S O B U S O B U S O B U S O B U S O B U S O B

b
its

n
ib

b
le

s

GetRangeHash GetRange Search Delete Put Head GetX FRSRV

ve
rb

ro
le

s

Figure 10: Basic ACL eacl-public-read-write

eacl-public-append: 0x0FBF9FFF

0 F B F 9 F F F

0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

U S O B U S O B U S O B U S O B U S O B U S O B U S O B

b
its

n
ib

b
le

s

GetRangeHash GetRange Search Delete Put Head GetX FRSRV

ve
rb

ro
le

s

Figure 11: Basic ACL eacl-public-append

Extended ACL

Extended ACL is stored in the container smart contract in NeoFS Sidechain. This means it can be
changed during container lifetime and there will be only one latest version of it in use. Only the con-
tainer owner, or the bearer of a SessionTokenwith a Container context signed by the container owner,
can change the ExtendedACL rules. Since it is stored in a formof a stable serialized protobuf structure,
eACL table can be only replaced with a new version, not altered or changed in-place in any way.

Extended ACL can only specify Basic ACL rules andmake themmore restitutive, but it can never ease
them. Extended ACL rules can never conflict with Basic ACL rules or cancel them. If something is
denied at Basic ACL level, it can never be allowed again by eACL. If Basic ACL contains Allow, eACL
may specify the rule to a finite list of allowed keys and Deny all others. If Basic ACL already contains
Deny, eACL can do nothing. Deny in Basic ACL cannot be changed to Allow in eACL. Therefore, the
records with denied GET, GETRANGE, PUT, SEARCH, HEAD for System target must be ignored. This
reduces to ignoring any System target rules.

When a user creates a containerwith the F-bit of Basic ACL set to 0, they do not need to settle the rules
immediately. For a non-existing Extended ACL request, Container contractwill return a null byte array.

Neo Saint Petersburg Competence Center 25

NeoFS Technical Specification Revision: c57acefc

It will be interpreted as a table with no rules.

To get the latest eACL version, a Storage Node needs to request it via RPC from the SideChain node. If
an eACL can’t be retrieved, the access permissions check fails.

Extended ACL rules get processed on-by-one, from the beginning of the table, based on the request
operation, until matching the rule found. It means that there is no separate rule for setting denying or
allowing policy. Final fallback rules must be provided by the user, if needed.

no

matchedOP?

no

matchedTarget?

no

emptyFilters?
yes

return "Can't Check eACL"

yes

errorMatchingFilter?

goto next ACLRule

no

matchedFilter?
yes

NextFilter?
no

return permission from "Action"

return permission from "Action"

NextACLRule?
no

return permission from "Basic ACL"

Figure 12: Extended ACL rules check

Neo Saint Petersburg Competence Center 26

NeoFS Technical Specification Revision: c57acefc

Extended ACL rules and table formatmay change depending on the version of NeoFS API used. Please
see the corresponding API specification section for details.’

Each eACL rule record has four fields:

Field Description

Operation NeoFS request action verb

Action Rule execution result action. Allows or denies access if the rule’s filters match.

Filter Filter to check particular properties of the request or the object

Target Subject’s role class or a list of public keys to match

and can be presented in different intermediate formats, like JSON, for the users’ convenience.

{
"records": [

{
"operation": "GET",
"action": "DENY",
"filters": [

{
"headerType": "OBJECT",
"matchType": "STRING_NOT_EQUAL",
"key": "Classification",
"value": "Public"

}
],
"targets": [

{
"role": "OTHERS"

}
]

}
]

}

Note that some filters with $Object prefix are not suitable for making denying rules on certain op-
erations. There may be an undefined behavior on some combinations of NeoFS verbs and object
attributes when eACL is set. In the table below, +means allowed to be used and -means undefined
behavior, hence not allowed.

Neo Saint Petersburg Competence Center 27

NeoFS Technical Specification Revision: c57acefc

$Object: GET HEAD PUT DELETE SEARCH RANGE RANGEHASH

version + + + - - - -

objectID + + + + - + +

containerID + + + + + + +

ownerID + + + - - - -

creationEpoch + + + - - - -

payloadLength + + + - - - -

payloadHash + + + - - - -

objectType + + + - - - -

homomorphicHash + + + - - - -

User headers + + + - - - -

Let us make an example. Delete and Range operations are likely to show undefined behavior if
Head has been denied for objects with particular payloadLength. They fail because they need to
produce HEAD requests upon execution. If a user cannot Head, those operations cannot work prop-
erly. The full table of spawning object requests is given below.

Base/Gen PUT DELETE HEAD RANGE GET HASH SEARCH

PUT + - - - - - -

DELETE + - + - - - +

HEAD - - + - - - -

RANGE - - + + - - -

GET - - + - + - -

HASH - - + + - - -

SEARCH - - - - - - +

Also, note that user attributes cannot be used as filters in an eACL rule as it provokes an undefined
behaviour. By design, when user attributes are set for a Complex Object, they are not inherited in the
Part Objects and are only stored in the Link Object header. We cannot control the access for an Object
of sizemore thanmaxObjectSize. To keep the system consistent we do not support eACL filters by

Neo Saint Petersburg Competence Center 28

NeoFS Technical Specification Revision: c57acefc

user attributes for small Objects as well.

Bearer Token

BearerToken allows to use the Extended ACL rules table from the token attached to the request,
instead of the Extended ACL table from the Container smart contract.

Just like JWT15, it has a limited lifetime and scope, hence can be used in the similar use cases, like
providing authorization to externally authenticated party.

BearerToken can be issued only by the container owner andmust be signed using the key associated
with the container’s OwnerID.

In the gRPC request, BearerToken is encoded in a protobuf format, but can be also presented in
different intermediate formats, like JSON, for the users’ convenience.

{
"body": {

"eaclTable": {
"version": {

"major": 2,
"minor": 6

},
"containerID": {

"value": "DIFWB4CFTayb9IAqeGwLGJdJfW6i5wWllPsF50EmazQ="
},
"records": [

{
"operation": "GET",
"action": "ALLOW",
"filters": [

{
"headerType": "OBJECT",
"matchType": "STRING_EQUAL",
"key": "Classification",
"value": "Public"

}
],
"targets": [

{
"role": "OTHERS",
"keys": []

15https://jwt.io

Neo Saint Petersburg Competence Center 29

https://jwt.io

NeoFS Technical Specification Revision: c57acefc

}
]

},
]

},
"ownerID": null,
"lifetime": {

"exp": "100500",
"nbf": "1",
"iat": "0"

}
},
"signature": {

"key": "AiGljnj41qh9o9uVqP9b9CArihHvXfGmljhAZNo4DceG",
"signature": "BAwfdE1ZVL0LfREGkuXRKT2....GA="

}
}

BearerToken format may change depending on the version of NeoFS API used. Please see the corre-
sponding API specification section for details.

ACL check algorithm

NeoFS tries to start with local Basic ACL checks that are fast and cheap in terms of resource consump-
tion. This should cover the vastmajority of cases. Then, if present in the request, the ACL records from
BearerToken, again locally. For the rest of complex cases, the Storage Node retrieves the Extended
ACL table from the Container smart contract. Thereafter, the NeoFS ACL system may slow down the
request processing only in complex cases when it’s inevitable.

The resulting ACL check algorithm is the following:

Neo Saint Petersburg Competence Center 30

NeoFS Technical Specification Revision: c57acefc

BasicACL Check

SelectNibbleMask

isSystem?
yes no

isIR?
yes isContainer

CheckIR CheckContainer

isOwner?
yes isOthers

CheckOwner CheckOthers

CheckObjectRequestOwnerMatch

yes

isSticky?

Bearer Check

CheckBearer

yes

hasBearer?
no

yes

hasBearerEnabled?

isFinal?
yes

ExtendedACL Check

isSystem
yes

CheckExtendedACL

Figure 13: ACL check order

Neo Saint Petersburg Competence Center 31

NeoFS Technical Specification Revision: c57acefc

Reputation system

NeoFS reputation system is a subsystem for calculating trust in a node. It is based on a reputation
model for assessing trust, which is, in turn, based on the EigenTrust algorithm designed for peer-to-
peer reputation management. The algorithm ensures that there is a uniquely defined manager (par-
ent node) for each network participant at each specified time (epoch). Based on the information re-
ceived from its child node and other managers, it iteratively puts a complex general (Global) Trust of
the entire network into the applicable child node.

The reputation system allows introducing nodes performance quality metric (trust). In a situation
when most of the nodes make an honest assessment of the actions of other nodes, the system lets
you calculate this metric quite accurately. This metric can be used for:

1. Filtering the list of nodeswhere the user intends to store information. For example, one can use
only those nodes whose scores are higher than the minimum acceptable for the user.

2. Making a decision to exclude untrusted hosts from the network. For example, one can suspend
a node in case it comes to the minimum level of quality in the network.

Trust

Trust in a NeoFS node is its quantitative (numerical) assessment based on the experience of interact-
ing with that node. The higher the score is, the higher is the trust in the node and vice versa. Since
the system uses a reputation-based trust model, the terms “trust” and “reputation” are considered
synonymous in this document.

The Subject of trust assessment is the one who calculates trust.
The Object of trust assessment is the one whose trust is being calculated.

Reputation models are based on the nature of social media reputation. Thus, trust in a node is built
up both by the estimates of the behavior of the node by another node and by the reputation of the
node evaluating its behavior.

Trust in a NeoFS in a node is formed based on its interactions with the Subjects of trust assessment.
Therefore, the reputation of a node changes during the NeoFS network working cycle when both the
behavior of the node itself, and the behavior of other nodes change.

Algorithm

General problem statement: the Subject of assessment needs to calculate the reputation of theObject
of trust assessment at a specific point of time (specific epoch).

Neo Saint Petersburg Competence Center 32

NeoFS Technical Specification Revision: c57acefc

EigenTrust is basedon thenotionof transitive trust: peeriwill have ahighopinionof thosepeerswho
have provided it with authentic information. Moreover, peer i is likely to trust the opinions of those
peers, since peers who are honest about the information they provide are also likely to be honest in
reporting their Local Trust values.

Global Trust is calculated in 3 main stages:

1. Each network member collects local statistics of network interactions with other peers, acting
as the Subject of reputation assessment.

2. At the end of an epoch, each node announces its local statistics to its manager.
3. Managers exchange received information iteratively and, based on the updated data, make ad-

justments to the trust obtained in the previous iteration.

The algorithm uses configuration parameters that affect the result of the Global Trust calculation. To
synchronize all network participants in terms of the values of these parameters, the nodes “read”
these parameters from the Netmap contract.

Subjects and Objects of Trust in NeoFS

In NeoFS, the reputation system is used to calculate the trust in Storage Node. Thus, the Object of
trust is always a Storage Node (and it is also the Subject in the local case). The Subject of Global Trust
is the entire ring of Storage Nodes.

Neo Saint Petersburg Competence Center 33

NeoFS Technical Specification Revision: c57acefc

Inner Ring Nodes

Neo Saint Petersburg Competence Center 34

NeoFS Technical Specification Revision: c57acefc

Storage Nodes

Address format

NeoFS uses Multiaddress format in a human-readable string version as a Node address in netmap.
Any new node must provide correct Multiaddress on bootstrap stage. After bootstrap, addresses are
verified by IR before new Node is a part of netmap.

Correct address composition and order:

1. Network layer(dns4, ip4 or ip6);
2. Transport layer(tcp);
3. Presentation layer(tls) - optional, may be absent.

Examples:

Correct

• /dns4/somehost/tcp/80/tls;
• /ip4/1.2.3.4/tcp/80.

Incorrect

• /tcp/80/ip4/1.2.3.4;
• /tls/ip4/1.2.3.4/tcp/80;
• /ip4/1.2.3.4/dns4/somehost/tcp/80.

Garbage Collector

Garbage Collector is a part of the Storage Engine. One GC instance runs on one shard.

GC should remove an object itself from Write Cache and Blobstor and the object’s metadata from
Metabase.

Upon adelete request, a Tombstoneobject is initialized. It contains allObjectIDswhich the deleted
Object was split into. A Tombstone belongs to the Container where the deleted Object is stored. In
spite of the fact that the __NEOFS__EXPIRATION_EPOCH attribute is assigned to the Tombstone,
its value is taken from the internal field that is specific to Tombstone object type. This action makes
it easier for Storage Engine data scrubbers to search through the Tombstone indices and select ones
for final physical deletion. By design, expiration epoch is strictlymore than the current one and never
equals to it. Once created, the Tombstone is put into the Container and thus is spread therein.

Neo Saint Petersburg Competence Center 35

NeoFS Technical Specification Revision: c57acefc

Since this moment, users cannot GET the object any more. If they try to GET the object, they will get
the error.

When a Tombstone is obtained, the Storage Engine produces somemeta information about it, which
helps it track object removal. The Graveyard entity is responsible for storing that metadata. It is a
Metabase table consisting of key-value pairs. The key is the deletedObject’s ID and the value depends
on how much time this Tombstone has already spent in the Graveyard: - it is a Tombstone Object
ID when the Object has just (i.e., on the current epoch) been inhumed; - it is a special GCMark flag
evaluated to “True” if Garbage Collector has marked the inhumed Object for total deletion.

Garbage Collector’s routine per epoch includes two jobs: invalid Objects check and marked Objects
removal.

Invalid Objects check

We consider an Object invalid if it is expired (i.e., __NEOFS_EXPIRATION_EPOCH well-known at-
tribute value is equal to the current epoch) or the Tombstone associated with this object is expired.

If an expired Object is found, GC leads it through the deletion procedure described above.

If an expired Tombstone is found, the associated Graveyard record is updated: the aforementioned
GCMark toggles for the inhumed Object.

Marked Objects removal

GC searches through the Graveyard and deletes Objects which have been previously GCMark’ed for
deletion. It first removes all metadata associated with this objectID and then removes the Object and
the related Tombstone from Blobstor, Write Cache and filesystem.

This procedure is the same for any object type, i.e. a Storage Group removal goes through the men-
tioned stages as well as a Regular Object.

Object Expiration

InNeoFS,Objectsmayhave an “expirationdate”. WhenanObject expires, it ismarked for deletion and
isn’t available anymore. There is a well-known __NEOFS__EXPIRATION_EPOCH attribute which
specifies the expiration date. Only a Regular Object may expire.

A Tombstone object is created upon Regular Object or Storage Group deletion. Every Tombstone ob-
ject has the __NEOFS__EXPIRATION_EPOCH attribute as well. Thereby Storage Engine is able to
filter Tombstones and select ones for total cleanup.

Neo Saint Petersburg Competence Center 36

NeoFS Technical Specification Revision: c57acefc

This attribute for aTombstoneObject is set automaticallyupon its creation. In caseof aRegularObject,
a user sets it manually.

Notifications

Storagenodes canproducenotifications about internal events for external listeners. The specification
covers only basic concepts of notifications and their triggers and does not define implementation de-
tails such as message binary format or transport protocol. Such details may vary in storage nodes
depending on external listeners. Notifications do not affect core protocol and can be disabled. There-
fore, one can use it only in a controlled environment with access to storage node configuration.

Notification is the entity that consists of topic andmessage.

Object notifications

Stored objects can trigger notifications. Object triggers notification if it contains valid well-known
object header __NEOFS__TICK_EPOCH. Readmore about well-known headers in the NeoFS API v2
section.

When the storage node processes a new epoch event with an epoch number specified in
__NEOFS__TICK_EPOCH, it should produce a notification related to such objects. If __NE-
OFS__TICK_EPOCH header specifies zero epoch, then the notification should be produced
immediately as an object saved in the storage engine.

Notificationmessage should contain the address of the object. Notification topic is defined by valid
well-known object header __NEOFS__TICK_TOPIC. If the header is omitted, the storage node
should use the default topic. Default topic is defined by storage node implementation.

Neo Saint Petersburg Competence Center 37

NeoFS Technical Specification Revision: c57acefc

Protocol gateways

HTTP

S3

NeoFS S3 gateway16 provides API compatible with Amazon S3 cloud storage service.

Access Box scheme

S3 gateway has to authenticate user requests regarding AWS spec17. So we have the following
scheme:

Authmate

S3 Gate

NeoFS

1. Issue secret

4. Authorization: Credential=Access Key...

3. Access key
(CID/OID)

AccessBox
2. Put access box object

6. Bearer token5. Get access
 box object

1. Invoke authmate
2. Put object to NeoFS
3. Form access key
4. Send request to S3 Gate
5. Get access box from NeoFS
6. Use bearer token from
 access box to send request
 to NeoFS

Figure 14: Access box scheme

1. A user uses the neofs-s3-authmate18 (Authmate) tool to get credentials (access_key_id and
secret_access_key).

2. Authmate forms “AccessBox” object (see the next section) and puts it into NeoFS.
3. Authmate output contains credentials (access_key_id and secret_access_key) that

can be used with AWS CLI, for example.
4. The user sends request to NeoFS S3 Gateway using standard AWS tool.
5. S3 Gateway gets “AccessBox” fromNeoFS by access_key_id and fetches Bearer Token from

it.
6. S3 Gateway uses fetched Bearer token to send a request to NeoFS on behalf of the user.

16https://github.com/nspcc-dev/neofs-s3-gw
17https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html
18https://github.com/nspcc-dev/neofs-s3-gw/blob/master/docs/authmate.md

Neo Saint Petersburg Competence Center 38

https://github.com/nspcc-dev/neofs-s3-gw
https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html
https://github.com/nspcc-dev/neofs-s3-gw/blob/master/docs/authmate.md

NeoFS Technical Specification Revision: c57acefc

Form Access Box object Actually, AccessBox is a regular object in NeoFS but properly formed. It
contains an encrypted Bearer token (BT), Session tokens (STs) and a secret_access_key.

The credentials are formed by the following steps:

1. User provides AuthmatewithBT,STs ands3gw_public_key_k(the public keys of the gates
that will be able to handle credentials) that will be used when the user sends requests via S3
Gateway.

2. Authmate:

1. Generates a secret_access_key (it’s 32 random bytes) and P256 (secp256r1) key pair
(authmate_private_key, authmate_public_key).

2. Forms a tokens protobuf struct that contains BT, STs, secret_access_key
3. For each s3gw_public_key_k derives a symmetric key symmetric_key_k using

ECDH19 andencryptstokens (encrypted_tokens_k = encrypt(tokens.to_bytes(),
secret_key_k, nonce_k)).

4. For each encypted_tokens_k forms a struct called gate_k that contains en-
crypted_tokens_k and s3gw_public_key_k.

5. Forms the final binary object AccessBox that contains authmate_public_key,
gate_1, …, gate_k.

6. Puts the AccessBox object to NeoFS and saves its address CID/OID as ac-
cess_key_id.

7. Returns the pair (access_key_id, secret_access_key) to the user.

Handle S3 request On getting a request, S3 Gateway:

1. Fetches the access_key_id from the Authorization header.
2. Gets AccessBox from NeoFS by address (recall access_key_id is CID/OID)
3. Usings3gw_private_key_k andauthmate_public_key derivessymmetric_key_k

anddecryptsencrypted_token_k thathasbeen foundbymatchings3gw_public_key_k
in gate_k struct.

4. Checks the signature of the initial request using secret_access_key from tokens struct.
5. Uses BT and STs to perform requests to NeoFS.

sFTP

19https://en.wikipedia.org/wiki/Elliptic-curve_Diffie%E2%80%93Hellman

Neo Saint Petersburg Competence Center 39

https://en.wikipedia.org/wiki/Elliptic-curve_Diffie%E2%80%93Hellman

NeoFS Technical Specification Revision: c57acefc

Data Audit

In the case of a large number of objects in a distributed network of untrusted nodes with an ever-
changing topology, the classical approach is to compareobjects’ hasheswith somesample inacentral
meta-data storage. This method is not efficient enought. It causes unacceptable overhead and leads
to data disclosure.

To solve this problem, NeoFS uses Homomorphic hashing. It is a special type of hashing algorithms
that allows computing the hash of a composite block from the hashes of individual blocks. NeoFS has
a focus on a probabilistic approach and homomorphic hashing to minimize network load and avoid
single points of failure.

NeoFS implements Data Audit as a unique zero-knowledgemulti-stage game based on homomorphic
hash calculation without data disclosure. Data Audit is independent of object storage procedures
(recovery, replication, andmigration) and respects ACL rules set by user.

For integrity checks, NeoFS calculates a composite homomorphic hash of all the objects in a group
under control and puts it into a structure called Storage Group. During integrity checks, NeoFS nodes
can ensure that hashes of stored objects are correct and are a part of that initially created composite
hash. This can be done without moving the object’s data over the network; and nomatter howmany
objects are in a Storage Group, the hash size is the same.

Storage Groups

The concept of a storage group has been introduced to reduce the dependence of the check complex-
ity on the number of objects stored in the system.

The consistency and availability of multiple objects on the network are achieved by validating the
storage group without saving meta information and performing validation on each object.

StorageGroupkeeps verification information forDataAudit sessions. Objects that requirepaid storage
guaranties are gathered in StorageGroups with additional information used for proof of storage
checks. A StorageGroup can be created only for objects from the same container.

A StorageGroup is a group of objects of a special type with a payload containing the serialized
protobuf structure. For more details on the format, please refer to the API specification in the corre-
sponding section.

StorageGroup structure has information about:

• Total size of the payloads of objects in the storage group
• Homomorphic hash from the concatenationof thepayloadsof the storage groupmembers. The
order of concatenation is the same as the order of the members in the members field.

Neo Saint Petersburg Competence Center 40

NeoFS Technical Specification Revision: c57acefc

• Last NeoFS epoch number of the storage group lifetime
• Alpha-numerically sorted list of member objects

Data Audit cycle

Data Audit cycle is triggered by Epoch change. InnerRing nodes share the audit work between them-
selves and do asmuch audit sessions as they can. On the next round, if InnerRing nodes can’t process
everything, new nodes can be promoted from the candidate list. On the opposite, if the load is low
enough, some InnerRing nodes can be demoted to maintain the balance.

Data Audit Game

Each Epoch, Inner Ring nodes perform a data audit cycle. It is a two-stage game in terms of the game
theory. At the first stage, nodes serving the selected container are asked to collectively reconstruct a
list of homomorphic hashes that form a composite hash stored in the Storage Group. By doing that,
nodes demonstrate that they have all necessary objects and are able to provide hashes of those ob-
jects. The provided list of hashes can be validated, but at the current stage it’s not known whether
some nodes are lying.

At the second stage, it is necessary to make sure nodes are honest and do not fake check results. The
Inner Ring nodes calculate a set of node pairs that store the sameobject and ask each node to provide
the homomorphic hashes of that object. Ranges are chosen in a way that the hash of a range asked
from one node is the composite hash of ranges asked from another node in that pair. Nodes cannot
predict objects or ranges that are chosen for the data audit session. They cannot even predict a pair
node for the game. This stage discovers malicious nodes fast because each node is serving multiple
containers and Storage Groups and participates in many data audit sessions in parallel during same
Epoch. When a node is caught in a lie, it gets a reputation penalty and loses any rewards for the Epoch.
So the price of faking checks and risks are too high and it is easier and cheaper for a node to be honest
and behave correctly.

Combining the fact of nodes being able to reconstruct the Storage Group’s composite hash and the
fact of nodes honest behavior, the system can consider that the data is safely stored, not corrupted,
and available with a high probability.

In the case of a successful data audit result, the Inner Ring nodes initiate microtransactions between
the accounts of the data owner and the owner of the storage node invoking the smart contract in the
NeoFS N3 Sidechain.

Neo Saint Petersburg Competence Center 41

NeoFS Technical Specification Revision: c57acefc

Figure 15: Data Audit

Audit tasks distribution

InnerRing nodes select containers to audit from a list of all containers in the network, forming a ring
of containers and taking an offset shackle with its number among InnerRing nodes and by audit num-
ber.

Each epoch, Inner Ring node performs data audit. One audit task is a one storage group to check.
Storage groups from one container get merged into a single audit result structure that will be saved
in the Audit smart contract in NeoFS Sidechain.

Upon each new Epoch notification, Inner Ring nodemust:

1. Check amount of unfinished audit tasks from queue, log it and flush it
NeoFS uses these values to initiate Inner Ring list growth or shrink.

2. Publish all unfinished audit results asynchronously
Audit results should be published on step 5 when all tasks for a single container are done. If a
new epoch happens, Inner Ring node should wait for all active tasks to finish and then publish
incomplete audit results.

3. Choose new tasks to process
Inner Ring lists all available containers from the container contract. Additionally it can make

Neo Saint Petersburg Competence Center 42

NeoFS Technical Specification Revision: c57acefc

extra invoke to find out container complexity, but for now consider all containers are the same.
Then, based on index and epoch number, Inner Ring node chooses a slice of the containers to
check. For each container it searches storage groups and put them in a task queue.

4. Run these tasks in a separate fixed size routine pool
Audit checks run simultaneously in a separate pool of routines. This pool has fixed size, e.g. 3
tasks at a time. When a new epoch happens, inner ring uses a new pool of routines. Previous
routine pool is alive until running tasks from the previous epoch are finished (we don’t discard
already started tasks).

5. Merge task results in audit result structures and publish them if there are no tasks left in the
container

6. Optionally dump task results to a file

New epoch notification

Task manager

Task Pool

Audit
Result

Audit Result
Manager

Active

PoR PoP PDP PoR PoP PDP

Task Pool

Inactive (started in previous epoch)

PoR PoP PDP

Flush / Create

Update
audit.Put()

Queue

Flush / Enqueue

Dequeue

RPC Invoker
container.List()

(1)

(2)(3)

Audit processor

(4)

(5)

(6)

(7)Audit
Result

Audit
Result

Audit
Result

Figure 16: Audit processor

Data Audit session

For each selected container Inner Ring node will:

• Generate a list of storage groups (object SEARCH + GET);
• Check each group;
• Record the results of all groups

The check of each group has three stages:

• Prove-of-Retrievability (PoR);
• Prove-of-Placement (PoP);

Neo Saint Petersburg Competence Center 43

NeoFS Technical Specification Revision: c57acefc

• Prove-of-Data-Possession (PDP).

Prove-of-Retrievability

During PoR check inner ring node should:

1. Get storage group object
2. For each member of a storage group, Inner Ring node makes HEAD request with main_only

flag
3. Compare cumulative object size and homomorphic hash with the values from step 1
4. Depending on step 3, save storage group ID in a list of succeeded or failed checks in audit result

Prove-of-Placement

At this stage Inner Ring tries to create pair-coverage for all nodes in container. Later these pairs will
play a game based on homomorphic hash properties (PDP check).

To do so Inner Ring:

1. Picks randommember X from the storage group
2. Builds placement vector for X
3. Makes HEAD request with TTL=1 RAW=true main_only=true to these nodes in place-

ment order until there are enough responses or nomore container nodes
4. Increments HIT counter in audit result if responses from step 3 are without single failure
5. Increments MISS counter in audit result if there are enough responses from step 3 but with

intermediate failures
6. Increments FAIL counter in audit result if there are not enough responses from step 3
7. Gets pair of nodes that returned result in step 3 andmark them covered,
8. Repeats everything from step 1, but ignore objects with placement in step 2 that does not in-

crease coverage in step 7.

Here, enough responses means a number of copies according to container policy.

Prove-of-Data-Possession

For all pairs after PoP, a Prove-of-Data-Possession is performed:

• If a node from a pair loses the game, it gets into the “lucky” list,
• If a node from a pair wins the game, it gets into the “unsuccessful” list.

Neo Saint Petersburg Competence Center 44

NeoFS Technical Specification Revision: c57acefc

Hash check

For the hash check phase, the Inner Ring node gets the object information using HEAD request with
the short flag toggled. With the size of the object known, the entire payload range is divided into
four parts of a random length.

Object's
payload

Node A

Node B

A.1

p1 p2 (cut point)

p3 length

0

A.2 A.3

B.1 B.2 B.3

Figure 17: Hash checking challenge

Next, hashes of ranges are requested. One request per range, with random delay, from both nodes.

Node A:
ℎ𝑎𝑠ℎ𝐴.1 = 𝑇 𝑍𝐻𝑎𝑠ℎ(𝑅𝑎𝑛𝑔𝑒(0, 𝑝2)),

ℎ𝑎𝑠ℎ𝐴.2 = 𝑇 𝑍𝐻𝑎𝑠ℎ(𝑅𝑎𝑛𝑔𝑒(𝑝2, 𝑝3 − 𝑝2)),

ℎ𝑎𝑠ℎ𝐴.3 = 𝑇 𝑍𝐻𝑎𝑠ℎ(𝑅𝑎𝑛𝑔𝑒(𝑝3, 𝑙𝑒𝑛𝑔𝑡ℎ − 𝑝3))

Node B:
ℎ𝑎𝑠ℎ𝐵.1 = 𝑇 𝑍𝐻𝑎𝑠ℎ(𝑅𝑎𝑛𝑔𝑒(0, 𝑝1)),

ℎ𝑎𝑠ℎ𝐵.2 = 𝑇 𝑍𝐻𝑎𝑠ℎ(𝑅𝑎𝑛𝑔𝑒(𝑝1, 𝑝2 − 𝑝1)),

ℎ𝑎𝑠ℎ𝐵.3 = 𝑇 𝑍𝐻𝑎𝑠ℎ(𝑅𝑎𝑛𝑔𝑒(𝑝2, 𝑙𝑒𝑛𝑔𝑡ℎ − 𝑝2))

Once the hashes obtained successfully, the check considered passed if:

ℎ𝑎𝑠ℎ𝐴.1 = ℎ𝑎𝑠ℎ𝐵.1 + ℎ𝑎𝑠ℎ𝐵.2,

ℎ𝑎𝑠ℎ𝐵.3 = ℎ𝑎𝑠ℎ𝐴.2 + ℎ𝑎𝑠ℎ𝐴.3,

Neo Saint Petersburg Competence Center 45

NeoFS Technical Specification Revision: c57acefc

ℎ𝑎𝑠ℎ𝐴.1 + ℎ𝑎𝑠ℎ𝐴.2 + ℎ𝑎𝑠ℎ𝐴.3 = ℎ𝑎𝑠ℎ𝐵.1 + ℎ𝑎𝑠ℎ𝐵.2 + ℎ𝑎𝑠ℎ𝐵.3 = 𝑜𝑏𝑗𝑒𝑐𝑡ℎ𝑎𝑠ℎ

Neo Saint Petersburg Competence Center 46

NeoFS Technical Specification Revision: c57acefc

Blockchain components

Role of blockcahin in the storage system

NeoFS stores data off-chain, on Storage Nodes. Clients access it directly in a peer-to-peer fashion.
This allows tomaintain the quality of service (read\write speed, big data volumes) at the level of tradi-
tional storage systems. That said, NeoFS is a global-scale decentralizednetwork and it needs aproven
mechanism to serve as a source of truth and global state and remain at that scale. That’s what we use
the Neo blockchain for.

The Inner Ring nodes take care of the entire network health. They control the networkmap of Storage
Nodes, manage user containers and access control lists, regulate financial operations and data audit.
Therefore, Inner Ring should do the following:

• make decisions according to consensus;
• be fault-tolerant;
• have synchronized global state available to Storage Nodes;
• minimize the amount of p2p connections to protect from direct attacks.

All these requirements canbe fulfilled byusing theblockchain as adistributeddatabasewith business
logic implemented in smart contracts. Inner Ring operations must be confirmed and audited, which
makes it reasonable to use smart contractmemory to store the global state of the storage system. It’s
what makes Inner Ring applications stateless, lightweight, and scalable.

Meanwhile, NeoFS contracts:

• store the state of the current epoch, network map, audit results, reputation estimations, and
container-related data;

• manage the economy;
• control the governance of the NeoFS network.

Mainchain and sidechain

Business logic of smart contracts is executed at contract method invocations from Inner Ring nodes.
They are eithermultisigned transactions or regular transactions. However, these invocations are paid
and require GAS Utility Token for computation. If data owners are charged for these computations, it
will be economically impractical for them to use NeoFS.

To solve this problem, we divide smart contract operations into two types:

• financial transactions and governance,

Neo Saint Petersburg Competence Center 47

NeoFS Technical Specification Revision: c57acefc

• storage system associated operations.

The first type of operations should be executed in themainchain. These operations are quite rare and
they require GAS as a payment asset. Themainchain for NeoFS is N3Main Net. Thus, NeoFS contract
is deployed in the mainchain. It allows to make a deposit, update network config, and reregister the
Inner Ring candidate node. The mainchain also manages Alphabet nodes of the Inner Ring using the
RoleManagement contract.

The second type of operations can be executed on an additional chain that we call the sidechain.
Sidechain is the Neo blockchain with a different network configuration. Validator nodes of the
sidechain are Alphabet nodes of the Inner Ring. Sidechain GAS is managed by Alphabet contracts
and should be used only for network maintenance and NeoFS contract execution. Sidechain has
Alphabet, Audit, Balance, Container, NeoFSID, Netmap, Reputation contracts. No
other contracts unrelated to NeoFS can be deployed in the sidechain.

Inner Ring nodes synchronize states of mainchain and sidechain contracts by listening to the notifica-
tion events and reacting to them.

Notary service

To make decisions according to the consensus, transactions must be multisigned by Alphabet nodes
of the Inner Ring. Inner Ring nodes, however, do not have a p2p connection to each other. Therefore,
multi-signature check is replaced with on-chain invocation accumulation. NeoFS contracts await for
5 out of 7 method invocations from Alphabet nodes of the Inner Ring. It leads to:

• increased number of transactions in the network;
• inability to calculate the exact price of a transaction, which leads to an increased cost of execu-
tion;

• the contract logic complication.

While in the sidechainб GAS is used only for utility purposes and invocation prices can be mostly ig-
nored, Alphabet nodes of the Inner Ring in themainchain use a real GAS asset to do withdrawal oper-
ation. High execution cost of such operation leads to high withdrawal commissions.

To solve this issue, NeoFS supports notary service20. The notary service allows to build multisigned
transactions natively in the blockchain. Thus, the number of transactions and their costs are reduced,
contract source code is simplified. Special proxy (in the sidechain) and processing (in the main-
chain) contracts can pay for invocation instead of Alphabet nodes of the Inner Ring. With these con-
tracts, it becomes easier to monitor and control the NeoFS economy.

20https://github.com/neo-project/neo/issues/1573#issuecomment-704874472

Neo Saint Petersburg Competence Center 48

https://github.com/neo-project/neo/issues/1573#issuecomment-704874472

NeoFS Technical Specification Revision: c57acefc

NeoFS Sidechain Governance

NeoFS uses the sidechain as a database to store meta-information about the network: the network
map, audit results, containers, keymappings, network settings, and several supplementary things.

The sidechain operates on the same principles as the mainnet – there are no free transactions, the
committee chooses the consensus nodes, etc. This structure provides a number of advantages. For
example, one can use the same N3 tool stack to work with NeoFS sidechain information.

To effectively work with the sidechain, we need to solve the following problems:

• How can the mainnet committee control Inner Ring nodes and the consensus nodes of the
sidechain?

• How do Storage Nodes and Inner Ring nodes get sidechain GAS Utility Token to send transac-
tions?

NeoFS Governance model solves these problems with seven “Alphabet” sidechain contracts and the
first seven Inner Ring nodes bound to those contracts, acting as the sidechain committee.

Alphabet contracts

Alphabet contracts are seven smart contracts deployed in the sidechain. They are named after the
first seven Glagolitic21 script letters: Az(�), Buky(�), Vedi(�), Glagoli(�), Dobro(�), Yest(�), Zhivete(�).
These contracts hold 100,000,000 sidechain NEO Token on their accounts (approximately 14,285,000
for each). By storing NEO Token on the contract accounts, we protect it from unauthorized use by
malicious sidechain nodes. Contracts do not transfer NEO and use it to vote for sidechain Validator
nodes and to emit GAS Utility Token.

Alphabet Inner Ring nodes

Alphabet Inner Ring nodes are the first seven nodes in the Inner Ring list that are logically boundwith
one-to-one relation to the Alphabet contracts. They are the voting nodes, tasked with making the
decisions in the NeoFS network. All other Inner Ring nodes take care of Data Audit, Storage Node
attribute verification, and other technical tasks.

Being an Alphabet node implies running the sidechain Consensus Node using the same key pair as
the NeoFS Inner Ring node instance. Hence, an Alphabet node candidate must:

• Setup a NeoFS Inner Ring node instance

21https://en.wikipedia.org/wiki/Glagolitic_script

Neo Saint Petersburg Competence Center 49

https://en.wikipedia.org/wiki/Glagolitic_script

NeoFS Technical Specification Revision: c57acefc

• Setup a NeoFS sidechain full node using same key pair
• Register the same key in mainnet NeoFS Inner Ring candidates list
• Register the same key in sidechain committee candidates list

Alphabet contracts invocation

Contracts cannot distribute the utility token or vote by themselves. To perform these operations, In-
ner Ring nodes invoke alphabet contract methods. An Alphabet Inner Ring node can invoke its corre-
sponding contract only. One node invokes one contract.

NeoFS IR

NeoFS Sidechain

IR ⰀIR ⰁIR ⰂIR ⰃIR ⰄIR ⰅIR ⰆIRIR Candidate

SC ⰀSC ⰁSC ⰂSC ⰃSC ⰄSC ⰅSC ⰆSC NetmapSC Audit

Figure 18: Inner Ring to Alphabet SC relation

Alphabetic contracts have hardcoded indexes. Contracts authenticate the method invoker by using
the list of Inner Ring node keys from theNetmapSmart Contract. This schemehelps to limitmalicious
Alphabet Inner Ring node actions andmakes network more resiliant to Inner Ring nodes losses.

Neo Saint Petersburg Competence Center 50

NeoFS Technical Specification Revision: c57acefc

IR Ⰰ

IR Ⰰ

IR Ⰱ

IR Ⰱ

SC Ⰰ

SC Ⰰ

SC Netmap

SC Netmap

alt [successful case]

Emit()

InnerRingList()

[]PublicKeysvalid invoker

emit gas

[panic case]

Emit()

InnerRingList()

[]PublicKeysinvalid invoker

panic

Figure 19: Alphabet SC invocation by Inner Ring nodes

Utility token distribution

InnerRingnodes invokeEmit()method incorrespondingalphabetical contracts. Thismethod trans-
fers all it’s NEO Token to it’s account, thereby producing utility token emission. Within the same invo-
cation context, the contract transfers a shareof the availableGASUtility Token to all Inner Ringwallets.
Each contract will keep the 1

8 ’th part on its balance as an emergency reserve.

𝐼𝑛𝑛𝑒𝑟𝑅𝑖𝑛𝑔𝑁𝑜𝑑𝑒𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 = 𝐺 ⋅ 7
8 ⋅ 1

𝑁

Neo Saint Petersburg Competence Center 51

NeoFS Technical Specification Revision: c57acefc

𝐺 - contract’s GAS Utility Token amount
𝑁 - length of Inner Ring list

After receiving GAS Utility Token, the nodes of the Inner Ring can periodically transfer a share to all
registered Storage nodes and use the received utility token for sidechain operations: change epochs,
register new containers, save data audit results, etc.

Storagenodeshave a limited supply of GASUtility Token topreventmalicious actions andDoSattacks.
Depending on Storage Node activity and reputation records, it will receive a different utility token
amount, normally enough to perform all required operations. Sidechain GAS and mainnet GAS are
different tokens, hence Storage Nodes don’t spend rewards for internal operations and can’t convert
the sidechain utility token into mainnet GAS Utility Token or vice versa.

Changing sidechain validators

Beforehand, Alphabet Inner Ring node candidates register validator keys in the list of candidates for
the sidechain committee. When the sidechain Netmap smart contract sends a notification regarding
Inner Ring node list updates, Alphabet Inner Ring nodes invoke the Vote([]keys) method of all
Alphabet smart contracts in order to gather signatures and then make them vote for the sidechain
Committee. Each Alphabet contract votes for the keys proposed by sending VotesPerKey votes for
each key. Normally, there is just one key per node, hence N equals 1.

𝑉 𝑜𝑡𝑒𝑠𝑃𝑒𝑟𝐾𝑒𝑦 = 𝐴
𝑁

𝐴 - contract’s NEO amount
𝑁 - length of proposed keys list

Changing the Inner Ring list

Inner Ring nodes follow a self-regulation process, allowing them to vote to substitute dead or mal-
functioning nodes with new ones from the candidate list. Only Alphabet nodes prepare new Inner
Ring node lists and vote for it, but all nodes listed theremust confirm their participation via the same
voting mechanism.

The voting procedure uses the sidechain Voting smart contract, but the list of candidates is taken
frommainnet NeoFS contract. When Inner Ring nodes agree on the updated list, it’s submitted to the
mainnet NeoFS smart contract and thenmirrored back to Netmap smart contract on sidechain.

By using the Emit() and Vote() methods of Alphabetic smart contracts, Inner Ring nodes take
full control of the sidechain. They control validator keys and utility token distribution. Thus, if the

Neo Saint Petersburg Competence Center 52

NeoFS Technical Specification Revision: c57acefc

mainnet committee will control list of Inner Ring nodes, then it will control sidechain as well.

The mainnet Committee can set the list of priority candidates for Alphabet Inner Ring nodes in the
mainnet DesignationContract. Nodes from that list will be voted for becoming Alphabet Inner
Ring nodes and substitute current Alphabet nodes, if they confirm the following requirements:

• Node’s key is registered as a candidate in mainnet NeoFS smart contract
• Node’s key is registered as a sidechain committee candidate
• Node is not listed as inactive in sidechain Netmap contract

The DesignationContract list may contain any number of valid candidates, and the voting pro-
cess will make sure asmany of them as possible are in the first seven active inner Ring nodes. If there
is not enough appropriate candidates, the rest will be taken from the regular candidates list. If there
are toomany, only the first seven suitable nodes will be used.

The voting algorithm is the same for each Inner Ring node and starts in the following cases:

• New Epoch
• Notification frommainnet DesignationContract on Inner Ring nodes list change
• Notification from sidechain Netmap contract on inactive Inner Ring nodes list change

All Inner Ring nodes listen for notifications from the Voting contract. If they see themselves in the new
Inner Ring nodes list, they confirm their participation by sending the same list in the Prepare()
method. Only newly added nodes need to confirm their participation with a transaction. If the node
is already in the active Inner Ring list, it doesn’t need to send a confirmation.

When thereareenoughAlphabet signaturesandall requiredcandidate signatureshavebeensentwith
the Prepare()method, the last invocation will update the list and finish voting round.

Active Alphabet Inner Ring nodes will be waiting for the round to end and locally test invoke the En-
dRound()method. When the voting round timeout occurs and the round has not finished success-
fully through agreement on a new list, one of the Alphabet nodeswill invokeEndRound() and settle
the round’s results.

If by the end of the voting round some newly added nodes haven’t confirmed their participation, they
are added to the Netmap smart contract’s inactive list. This will trigger a new voting round without
those inactive nodes.

If there are not enough candidates, Inner Ring nodes will accept the best list they can gather.

When the new list is agreed, theVoting smart contract sends a notification. All Alphabet nodes react
with invocation of UpdateInnerRing() on themainnet NeoFS smart contract. When themajority
of Alphabet nodes send the update and mainnet list is updated, it will be mirrored by Alphabet Inner
Ring nodes in the sidechain Netmap smart contract.

Neo Saint Petersburg Competence Center 53

NeoFS Technical Specification Revision: c57acefc

Take inactive list from sidechain Netmap contract

Take candiate list from mainnet DesignationContract and filter out inactive or invalid nodes

There is no need
to change IR list

yes

Are first seven candidates in active IR list?

no

Are there inactive nodes in active IR list or need to change IR number?
yes

May be cached
at previous step

Take candiate list from mainnet DesignationContract and filter out inactive or invalid nodes

Alphabet IR list
must only be
changed by 1/3-1
nodes at once

Calculate Alphabet IR change

Take current IR list non-Alphabet tail and filter out inactive or invalid nodes

Take candiate list from mainnet NeoFS contract and filter out inactive or invalid nodes

Append new candidates to IR list tail

no

Enough IR nodes left?

Invoke Prepare() method of Voting smart contract with new IR list

Figure 20: Inner Ring Alphabet node voting algorithm

Neo Saint Petersburg Competence Center 54

NeoFS Technical Specification Revision: c57acefc

NeoFS
contract

NeoFS
contract

Netmap
contract

Netmap
contract

Voting
contract

Voting
contract

IR Ⰰ

IR Ⰰ

IR Ⰱ

IR Ⰱ

IR Ⰲ

IR Ⰲ

IR 1

IR 1

IR 2

IR 2

IR 3

IR 3

Failed voting

Prepare({Ⰰ,Ⰱ,Ⰲ,1,2}) Each list calculated deterministically
by each Alphabet IR node

Prepare({Ⰰ,Ⰱ,Ⰲ,1,2})

Prepare({Ⰰ,Ⰱ,Ⰲ,1,2})Need 2/3+1 Alphabet IR votes

Notify

NotifyOnly new IR nodes in the list send confirmation

Prepare({Ⰰ,Ⰱ,Ⰲ,1,2})Regular IR confirm only,
without list recalculation

EndRound() Alphabet IR nodes wait for timeout
and then invoke round results settlement

SetInactiveIR({1})

Notify

Notify

Notify

New voting round

Prepare({Ⰰ,Ⰱ,Ⰲ,2,3})

Prepare({Ⰰ,Ⰱ,Ⰲ,2,3})

Prepare({Ⰰ,Ⰱ,Ⰲ,2,3})

Notify

Notify

Prepare({Ⰰ,Ⰱ,Ⰲ,2,3})

Prepare({Ⰰ,Ⰱ,Ⰲ,2,3})Got new IR List!

Notify

Notify

Notify

Update IR list

UpdateInnerRing({Ⰰ,Ⰱ,Ⰲ,2,3})

UpdateInnerRing({Ⰰ,Ⰱ,Ⰲ,2,3})

UpdateInnerRing({Ⰰ,Ⰱ,Ⰲ,2,3})

Update IR list

Notify

Notify

Notify

UpdateInnerRing({Ⰰ,Ⰱ,Ⰲ,2,3})

UpdateInnerRing({Ⰰ,Ⰱ,Ⰲ,2,3})

UpdateInnerRing({Ⰰ,Ⰱ,Ⰲ,2,3})

Update IR list

Figure 21: Inner Ring list update in mainnet and sidechain

Neo Saint Petersburg Competence Center 55

NeoFS Technical Specification Revision: c57acefc

NeoFS Smart Contracts

alphabet contract

Alphabet contract is a contract deployed in NeoFS sidechain.

Alphabet contract is designed to support GAS production and vote for new validators in the sidechain.
NEO token is required to produce GAS and vote for a new committee. It can be distributed among
alphabet nodes of the Inner Ring. However, some of them may be malicious, and some NEO can be
lost. It will destabilize the economic of the sidechain. To avoid it, all 100,000,000 NEO are distributed
among all alphabet contracts.

To identify alphabet contracts, they are named with letters of the Glagolitic alphabet. Names are set
at contract deploy. Alphabet nodes of the Inner Ring communicate with one of the alphabetical con-
tracts to emit GAS. To vote for a new list of side chain committee, alphabet nodes of the Inner Ring
create multisignature transactions for each alphabet contract.

Contract notifications Alphabet contract does not produce notifications to process.

Contract methods

Emit

func Emit()

Emit method produces sidechain GAS and distributes it among Inner Ring nodes and proxy contract.
It can be invoked only by an Alphabet node of the Inner Ring.

To produce GAS, an alphabet contract transfers all available NEO from the contract account to itself.
If notary is enabled, 50% of the GAS in the contract account are transferred to proxy contract. 43.75%
of the GAS are equally distributed among all Inner Ring nodes. Remaining 6.25% of the GAS stay in
the contract.

If notary is disabled, 87.5% of the GAS are equally distributed among all Inner Ring nodes. Remaining
12.5% of the GAS stay in the contract.

Gas

func Gas() int

GAS returns the amount of the sidechain GAS stored in the contract account.

Neo Saint Petersburg Competence Center 56

NeoFS Technical Specification Revision: c57acefc

Name

func Name() string

Name returns the Glagolitic name of the contract.

Neo

func Neo() int

NEO returns the amount of sidechain NEO stored in the contract account.

OnNEP17Payment

func OnNEP17Payment(from interop.Hash160, amount int, data interface{})

OnNEP17Payment is a callback for NEP-17 compatible native GAS and NEO contracts.

Update

func Update(script []byte, manifest []byte, data interface{})

Update method updates contract source code andmanifest. It can be invoked only by committee.

Version

func Version() int

Version returns the version of the contract.

Vote

func Vote(epoch int, candidates []interop.PublicKey)

Vote method votes for the sidechain committee. It requires multisignature from Alphabet nodes of
the Inner Ring.

This method is used when governance changes the list of Alphabet nodes of the Inner Ring. Alphabet
nodes share keyswith sidechain validators, therefore it is required to change themaswell. To do that,
NEO holders (which are alphabet contracts) should vote for a new committee.

Neo Saint Petersburg Competence Center 57

NeoFS Technical Specification Revision: c57acefc

audit contract

Audit contract is a contract deployed in NeoFS sidechain.

Inner Ring nodes perform audit of the registered containers during every epoch. If a container con-
tains StorageGroup objects, an Inner Ring node initializes a series of audit checks. Based on the re-
sults of these checks, the Inner Ring node creates a DataAuditResult structure for the container. The
content of this structure makes it possible to determine which storage nodes have been examined
and see the status of these checks. Regarding this information, the container owner is charged for
data storage.

Audit contract is used as a reliable and verifiable storage for all DataAuditResult structures. At the
end of data audit routine, Inner Ring nodes send a stable marshaled version of the DataAuditResult
structure to the contract. WhenAlphabet nodes of the Inner Ring perform settlement operations, they
make a list and get these AuditResultStructures from the audit contract.

Contract notifications Audit contract does not produce notifications to process.

Contract methods

Get

func Get(id []byte) []byte

Get method returns a stable marshaled DataAuditResult structure.

The ID of the DataAuditResult can be obtained from listing methods.

List

func List() [][]byte

List method returns a list of all available DataAuditResult IDs from the contract storage.

ListByCID

func ListByCID(epoch int, cid []byte) [][]byte

ListByCID method returns a list of DataAuditResult IDs generated during the specified epoch for the
specified container.

Neo Saint Petersburg Competence Center 58

NeoFS Technical Specification Revision: c57acefc

ListByEpoch

func ListByEpoch(epoch int) [][]byte

ListByEpochmethod returns a list of DataAuditResult IDs generated during the specified epoch.

ListByNode

func ListByNode(epoch int, cid []byte, key interop.PublicKey) [][]byte

ListByNodemethod returns a list of DataAuditResult IDs generated in the specified epoch for the spec-
ified container by the specified Inner Ring node.

Put

func Put(rawAuditResult []byte)

Put method stores a stable marshalled ‘DataAuditResult‘ structure. It can be invoked only by Inner
Ring nodes.

Inner Ring nodes perform audit of containers and produce ‘DataAuditResult‘ structures. They are
stored in audit contract and used for settlements in later epochs.

Update

func Update(script []byte, manifest []byte, data interface{})

Update method updates contract source code andmanifest. It can be invoked only by committee.

Version

func Version() int

Version returns the version of the contract.

balance contract

Balance contract is a contract deployed in NeoFS sidechain.

Balance contract stores all NeoFS account balances. It is a NEP-17 compatible contract, so it can be
tracked and controlled by N3 compatible network monitors and wallet software.

This contract is used to store all micro transactions in the sidechain, such as data audit settlements or
container fee payments. It is inefficient to make such small payment transactions in the mainchain.

Neo Saint Petersburg Competence Center 59

NeoFS Technical Specification Revision: c57acefc

To process small transfers, balance contract has higher (12) decimal precision than native GAS con-
tract.

NeoFS balances are synchronizedwithmainchain operations. Deposit producesminting of NEOFS to-
kens in Balance contract. Withdraw locks some NEOFS tokens in a special lock account. When NeoFS
contract transfers GAS assets back to the user, the lock account is destroyed with burn operation.

Contract notifications Transfer notification. This is a NEP-17 standard notification.

Transfer:
- name: from

type: Hash160
- name: to

type: Hash160
- name: amount

type: Integer

TransferX notification. This is an enhanced transfer notification with details.

TransferX:
- name: from

type: Hash160
- name: to

type: Hash160
- name: amount

type: Integer
- name: details

type: ByteArray

Locknotification. This notification is producedwhena lockaccount is created. It contains information
about themainchain transaction thathasproduced theasset lock, theaddressof the lockaccountand
theNeoFS epoch number until which the lock account is valid. Alphabet nodes of the Inner Ring catch
notification and initialize Chequemethod invocation of NeoFS contract.

Lock:
- name: txID

type: ByteArray
- name: from

Neo Saint Petersburg Competence Center 60

NeoFS Technical Specification Revision: c57acefc

type: Hash160
- name: to

type: Hash160
- name: amount

type: Integer
- name: until

type: Integer

Mint notification. This notification is produced when user balance is replenished from deposit in the
mainchain.

Mint:
- name: to
type: Hash160

- name: amount
type: Integer

Burn notification. This notification is produced after user balance is reduced when NeoFS contract
has transferred GAS assets back to the user.

Burn:
- name: from

type: Hash160
- name: amount

type: Integer

Contract methods

BalanceOf

func BalanceOf(account interop.Hash160) int

BalanceOf is a NEP-17 standard method that returns NeoFS balance of the specified account.

Burn

func Burn(from interop.Hash160, amount int, txDetails []byte)

Neo Saint Petersburg Competence Center 61

NeoFS Technical Specification Revision: c57acefc

Burn is a method that transfers assets from a user account to an empty account. It can be invoked
only by Alphabet nodes of the Inner Ring.

It produces Burn, Transfer and TransferX notifications.

Burn method is invoked by Alphabet nodes of the Inner Ring when they process Cheque notification
from NeoFS contract. It means that locked assets have been transferred to the user in themainchain,
therefore the lock account should be destroyed. Before that, Alphabet nodes should synchronize pre-
cision of mainchain GAS contract and Balance contract. Burn decreases total supply of NEP-17 com-
patible NeoFS token.

Decimals

func Decimals() int

Decimals is a NEP-17 standard method that returns precision of NeoFS balances.

Lock

func Lock(txDetails []byte, from, to interop.Hash160, amount, until int)

Lock is a method that transfers assets from a user account to the lock account related to the user. It
can be invoked only by Alphabet nodes of the Inner Ring.

It produces Lock, Transfer and TransferX notifications.

Lockmethod is invoked by Alphabet nodes of the Inner Ringwhen they processWithdrawnotification
fromNeoFScontract. This should transfer assets toanew lockaccount thatwon’tbeused for anything
beside Unlock and Burn.

Mint

func Mint(to interop.Hash160, amount int, txDetails []byte)

Mint is amethod that transfers assets to a user account froman empty account. It can be invoked only
by Alphabet nodes of the Inner Ring.

It produces Mint, Transfer and TransferX notifications.

Mint method is invoked by Alphabet nodes of the Inner Ring when they process Deposit notification
from NeoFS contract. Before that, Alphabet nodes should synchronize precision of mainchain GAS
contract and Balance contract. Mint increases total supply of NEP-17 compatible NeoFS token.

Neo Saint Petersburg Competence Center 62

NeoFS Technical Specification Revision: c57acefc

NewEpoch

func NewEpoch(epochNum int)

NewEpoch is amethod that checks timeout on lock accounts and returns assets if lock is not available
anymore. It can be invoked only by NewEpochmethod of Netmap contract.

It produces Transfer and TransferX notifications.

Symbol

func Symbol() string

Symbol is a NEP-17 standard method that returns NEOFS token symbol.

TotalSupply

func TotalSupply() int

TotalSupply is a NEP-17 standard method that returns total amount of main chain GAS in NeoFS net-
work.

Transfer

func Transfer(from, to interop.Hash160, amount int, data interface{}) bool

Transfer is a NEP-17 standard method that transfers NeoFS balance from one account to another. It
can be invoked only by the account owner.

It produces Transfer and TransferX notifications. TransferX notificationwill have empty details field.

TransferX

func TransferX(from, to interop.Hash160, amount int, details []byte)

TransferX is a method for NeoFS balance to be transferred from one account to another. It can be
invoked by the account owner or by Alphabet nodes.

It produces Transfer and TransferX notifications.

TransferXmethod expands Transfermethod by having extra details argument. TransferXmethod also
allows to transfer assets by Alphabet nodes of the Inner Ring with multisignature.

Update

func Update(script []byte, manifest []byte, data interface{})

Update method updates contract source code andmanifest. It can be invoked only by committee.

Neo Saint Petersburg Competence Center 63

NeoFS Technical Specification Revision: c57acefc

Version

func Version() int

Version returns the version of the contract.

container contract

Container contract is a contract deployed in NeoFS sidechain.

Container contract stores and manages containers, extended ACLs and container size estimations.
Contract does not perform sanity or signature checks of containers or extended ACLs, it is done by
Alphabet nodes of the Inner Ring. Alphabet nodes approve it by invoking the same Put or SetEACL
methods with the same arguments.

Contract notifications containerPut notification. This notification is produced when a user wants
to create a new container. Alphabet nodes of the Inner Ring catch the notification and validate con-
tainer data, signature and token if present.

containerPut:
- name: container

type: ByteArray
- name: signature

type: Signature
- name: publicKey

type: PublicKey
- name: token

type: ByteArray

containerDelete notification. This notification is produced when a container owner wants to delete a
container. Alphabet nodes of the Inner Ring catch the notification and validate container ownership,
signature and token if present.

containerDelete:
- name: containerID

type: ByteArray
- name: signature

type: Signature
- name: token

type: ByteArray

Neo Saint Petersburg Competence Center 64

NeoFS Technical Specification Revision: c57acefc

setEACL notification. This notification is produced when a container owner wants to update an ex-
tended ACL of a container. Alphabet nodes of the Inner Ring catch the notification and validate con-
tainer ownership, signature and token if present.

setEACL:
- name: eACL

type: ByteArray
- name: signature

type: Signature
- name: publicKey

type: PublicKey
- name: token

type: ByteArray

StartEstimation notification. This notification is produced when Storage nodes should exchange esti-
mation values of container sizes among other Storage nodes.

StartEstimation:
- name: epoch

type: Integer

StopEstimation notification. This notification is produced when Storage nodes should calculate aver-
age container size based on received estimations and store it in Container contract.

StopEstimation:
- name: epoch

type: Integer

Contract methods

Count

func Count() int

Count method returns the number of registered containers.

Neo Saint Petersburg Competence Center 65

NeoFS Technical Specification Revision: c57acefc

Delete

func Delete(containerID []byte, signature interop.Signature, token []byte)

Deletemethod removesacontainer fromthecontract storage if it hasbeen invokedbyAlphabetnodes
of the Inner Ring. Otherwise, it produces containerDelete notification.

Signature is a RFC6979 signature of the container ID. Token is optional and should be a stable mar-
shaled SessionToken structure from API.

If the container doesn’t exist, it panics with NotFoundError.

List

func List(owner []byte) [][]byte

List method returns a list of all container IDs owned by the specified owner.

ListContainerSizes

func ListContainerSizes(epoch int) [][]byte

ListContainerSizes method returns the IDs of container size estimations that has been registered for
the specified epoch.

NewEpoch

func NewEpoch(epochNum int)

NewEpoch method removes all container size estimations from epoch older than epochNum + 3. It
can be invoked only by NewEpochmethod of the Netmap contract.

OnNEP11Payment

func OnNEP11Payment(a interop.Hash160, b int, c []byte, d interface{})

OnNEP11Payment is needed for registration with contract as the owner to work.

Owner

func Owner(containerID []byte) []byte

Owner method returns a 25 byte Owner ID of the container.

If the container doesn’t exist, it panics with NotFoundError.

Neo Saint Petersburg Competence Center 66

NeoFS Technical Specification Revision: c57acefc

Put

func Put(container []byte, signature interop.Signature, publicKey
interop.PublicKey, token []byte)↪

Put method creates a new container if it has been invoked by Alphabet nodes of the Inner Ring. Oth-
erwise, it produces containerPut notification.

Container should be a stable marshaled Container structure from API. Signature is a RFC6979 signa-
ture of the Container. PublicKey contains the public key of the signer. Token is optional and should
be a stable marshaled SessionToken structure from API.

PutContainerSize

func PutContainerSize(epoch int, cid []byte, usedSize int, pubKey
interop.PublicKey)↪

PutContainerSizemethod saves container size estimation in contractmemory. It can be invoked only
by Storage nodes from the network map. This method checks witness based on the provided public
key of the Storage node.

If the container doesn’t exist, it panics with NotFoundError.

PutNamed

func PutNamed(container []byte, signature interop.Signature, publicKey
interop.PublicKey, token []byte, name, zone string)↪

PutNamed is similar to put but also sets a TXT record in nns contract. Note that zonemust exist.

SetEACL

func SetEACL(eACL []byte, signature interop.Signature, publicKey
interop.PublicKey, token []byte)↪

SetEACL method sets a new extended ACL table related to the contract if it was invoked by Alphabet
nodes of the Inner Ring. Otherwise, it produces setEACL notification.

EACL should be a stable marshaled EACLTable structure from API. Signature is a RFC6979 signature
of the Container. PublicKey contains the public key of the signer. Token is optional and should be a
stable marshaled SessionToken structure from API.

If the container doesn’t exist, it panics with NotFoundError.

Neo Saint Petersburg Competence Center 67

NeoFS Technical Specification Revision: c57acefc

StartContainerEstimation

func StartContainerEstimation(epoch int)

StartContainerEstimation method produces StartEstimation notification. It can be invoked only by
Alphabet nodes of the Inner Ring.

StopContainerEstimation

func StopContainerEstimation(epoch int)

StopContainerEstimation method produces StopEstimation notification. It can be invoked only by
Alphabet nodes of the Inner Ring.

Update

func Update(script []byte, manifest []byte, data interface{})

Update method updates contract source code andmanifest. It can be invoked by committee only.

Version

func Version() int

Version returns the version of the contract.

neofs contract

NeoFS contract is a contract deployed in NeoFSmainchain.

NeoFS contract is an entry point to NeoFS users. This contract stores all NeoFS related GAS, registers
new Inner Ring candidates and produces notifications to control the sidechain.

While mainchain committee controls the list of Alphabet nodes in native RoleManagement contract,
NeoFS can’t change more than 1\3 keys at a time. NeoFS contract contains the actual list of Alphabet
nodes in the sidechain.

Network configuration is also stored in NeoFS contract. All changes in configuration are mirrored in
the sidechain with notifications.

Contract notifications Deposit notification. This notification is produced when user transfers na-
tive GAS to the NeoFS contract address. The same amount of NEOFS token will be minted in Balance
contract in the sidechain.

Neo Saint Petersburg Competence Center 68

NeoFS Technical Specification Revision: c57acefc

Deposit:
- name: from

type: Hash160
- name: amount

type: Integer
- name: receiver

type: Hash160
- name: txHash

type: Hash256

Withdraw notification. This notification is produced when a user wants to withdraw GAS from the
internal NeoFS balance and has paid fee for that.

Withdraw:
- name: user

type: Hash160
- name: amount

type: Integer
- name: txHash

type: Hash256

Cheque notification. This notification is produced when NeoFS contract has successfully transferred
assets back to the user after withdraw.

Cheque:
- name: id

type: ByteArray
- name: user

type: Hash160
- name: amount

type: Integer
- name: lockAccount

type: ByteArray

Bind notification. This notification is produced when a user wants to bind public keys with the user
account (OwnerID). Keys argument is an array of ByteArray.

Bind:

Neo Saint Petersburg Competence Center 69

NeoFS Technical Specification Revision: c57acefc

- name: user
type: ByteArray

- name: keys
type: Array

Unbind notification. This notification is produced when a user wants to unbind public keys with the
user account (OwnerID). Keys argument is an array of ByteArray.

Unbind:
- name: user

type: ByteArray
- name: keys

type: Array

AlphabetUpdate notification. This notification is produced when Alphabet nodes have updated their
lists in the contract. Alphabet argument is an array of ByteArray. It contains public keys of new alpha-
bet nodes.

AlphabetUpdate:
- name: id

type: ByteArray
- name: alphabet

type: Array

SetConfig notification. This notification is produced when Alphabet nodes update NeoFS network
configuration value.

SetConfig
- name: id

type: ByteArray
- name: key

type: ByteArray
- name: value

type: ByteArray

Contract methods

Neo Saint Petersburg Competence Center 70

NeoFS Technical Specification Revision: c57acefc

AlphabetAddress

func AlphabetAddress() interop.Hash160

AlphabetAddress returns 2\3n+1 multisignature address of alphabet nodes. It is used in sidechain
notary disabled environment.

AlphabetList

func AlphabetList() []common.IRNode

AlphabetList returns an array of alphabet node keys. It is used in sidechain notary disabled environ-
ment.

AlphabetUpdate

func AlphabetUpdate(id []byte, args []interop.PublicKey)

AlphabetUpdate updates a list of alphabet nodes with the provided list of public keys. It can be in-
voked only by alphabet nodes.

This method is used in notary disabled sidechain environment. In this case, the actual alphabet list
should be stored in the NeoFS contract.

Bind

func Bind(user []byte, keys []interop.PublicKey)

Bind method produces notification to bind the specified public keys in NeoFSID contract in the
sidechain. It can be invoked only by specified user.

This method produces Bind notification. This method panics if keys are not 33 byte long. User argu-
ment must be a valid 20 byte script hash.

Cheque

func Cheque(id []byte, user interop.Hash160, amount int, lockAcc []byte)

Cheque transfers GAS back to the user from the contract account, if assets were successfully locked in
NeoFS balance contract. It can be invoked only by Alphabet nodes.

This method produces Cheque notification to burn assets in sidechain.

Neo Saint Petersburg Competence Center 71

NeoFS Technical Specification Revision: c57acefc

Config

func Config(key []byte) interface{}

Config returns configuration value of NeoFS configuration. If the key does not exists, returns nil.

InnerRingCandidateAdd

func InnerRingCandidateAdd(key interop.PublicKey)

InnerRingCandidateAdd adds a key to a list of Inner Ring candidates. It can be invoked only by the
candidate itself.

This method transfers fee from a candidate to the contract account. Fee value is specified in NeoFS
network config with the key InnerRingCandidateFee.

InnerRingCandidateRemove

func InnerRingCandidateRemove(key interop.PublicKey)

InnerRingCandidateRemove removes a key from a list of Inner Ring candidates. It can be invoked by
Alphabet nodes or the candidate itself.

This method does not return fee back to the candidate.

InnerRingCandidates

func InnerRingCandidates() []common.IRNode

InnerRingCandidates returns an array of structures that contain an Inner Ring candidate node key.

OnNEP17Payment

func OnNEP17Payment(from interop.Hash160, amount int, data interface{})

OnNEP17Payment is a callback for NEP-17 compatible native GAS contract. It takes no more than
9000.0 GAS. Native GAS has precision 8, and NeoFS balance contract has precision 12. Values bigger
than 9000.0 can break JSON limits for integers when precision is converted.

SetConfig

func SetConfig(id, key, val []byte)

SetConfig key-value pair as a NeoFS runtime configuration value. It can be invoked only by Alphabet
nodes.

Neo Saint Petersburg Competence Center 72

NeoFS Technical Specification Revision: c57acefc

Unbind

func Unbind(user []byte, keys []interop.PublicKey)

Unbind method produces notification to unbind the specified public keys in NeoFSID contract in the
sidechain. It can be invoked only by the specified user.

This method produces Unbind notification. This method panics if keys are not 33 byte long. User
argument must be a valid 20 byte script hash.

Update

func Update(script []byte, manifest []byte, data interface{})

Updatemethod updates contract source code andmanifest. It can be invoked only by sidechain com-
mittee.

Version

func Version() int

Version returns version of the contract.

Withdraw

func Withdraw(user interop.Hash160, amount int)

Withdraw initializes gas asset withdraw from NeoFS. It can be invoked only by the specified user.

ThismethodproducesWithdrawnotification to lockassets in the sidechainand transferswithdraw fee
from a user account to each Alphabet node. If notary is enabled in the mainchain, fee is transferred
to Processing contract. Fee value is specified in NeoFS network config with the key WithdrawFee.

neofsid contract

NeoFSID contract is a contract deployed in NeoFS sidechain.

NeoFSID contract is used to store connection between an OwnerID and its public keys. OwnerID is
a 25-byte N3 wallet address that can be produced from a public key. It is one-way conversion. In
simple cases, NeoFS verifies ownership by checking signature and relation between a public key and
an OwnerID.

Inmore complex cases, a user can use public keys unrelated to theOwnerID tomaintain secure access
to the data. NeoFSID contract stores relation between an OwnerID and arbitrary public keys. Data

Neo Saint Petersburg Competence Center 73

NeoFS Technical Specification Revision: c57acefc

ownercanbindapublic keywith its accountorunbind itby invokingBindorUnbindmethodsofNeoFS
contract in the mainchain. After that, Alphabet nodes produce multisigned AddKey and RemoveKey
invocations of NeoFSID contract.

Contract notifications NeoFSID contract does not produce notifications to process.

Contract methods

AddKey

func AddKey(owner []byte, keys []interop.PublicKey)

AddKey binds a list of the provided public keys to the OwnerID. It can be invoked only by Alphabet
nodes.

Thismethod panics if the OwnerID is not an ownerSize byte or the public key is not 33 byte long. If the
key is already bound, the method ignores it.

Key

func Key(owner []byte) [][]byte

Key method returns a list of 33-byte public keys bound with the OwnerID.

This method panics if the owner is not ownerSize byte long.

RemoveKey

func RemoveKey(owner []byte, keys []interop.PublicKey)

RemoveKey unbinds the provided public keys from the OwnerID. It can be invoked only by Alphabet
nodes.

Thismethod panics if the OwnerID is not an ownerSize byte or the public key is not 33 byte long. If the
key is already unbound, the method ignores it.

Update

func Update(script []byte, manifest []byte, data interface{})

Update method updates contract source code andmanifest. It can be invoked only by committee.

Neo Saint Petersburg Competence Center 74

NeoFS Technical Specification Revision: c57acefc

Version

func Version() int

Version returns the version of the contract.

netmap contract

Netmap contract is a contract deployed in NeoFS sidechain.

Netmap contract stores andmanages NeoFS networkmap, Storage node candidates and epoch num-
ber counter. In notary disabled environment, contract also stores a list of Inner Ring node keys.

Contract notifications AddPeer notification. This notification is produced when a Storage node
sends a bootstrap request by invoking AddPeer method.

AddPeer
- name: nodeInfo

type: ByteArray

UpdateState notification. This notification is producedwhen a Storage nodewants to change its state
(go offline) by invoking UpdateState method. Supported states: (2) -- offline.

UpdateState
- name: state

type: Integer
- name: publicKey

type: PublicKey

NewEpoch notification. This notification is produced when a new epoch is applied in the network by
invoking NewEpochmethod.

NewEpoch
- name: epoch

type: Integer

Contract methods

Neo Saint Petersburg Competence Center 75

NeoFS Technical Specification Revision: c57acefc

AddPeer

func AddPeer(nodeInfo []byte)

AddPeermethod adds a new candidate to the next networkmap if it was invoked by Alphabet node. If
it was invoked by a node candidate, it produces AddPeer notification. Otherwise, the method throws
panic.

If the candidate already exists, its info is updated. NodeInfo argument contains a stable marshaled
version of netmap.NodeInfo structure.

AddPeerIR

func AddPeerIR(nodeInfo []byte)

AddPeerIR method tries to add a new candidate to the network map. It should only be invoked in
notary-enabled environment by the alphabet.

Config

func Config(key []byte) interface{}

Config returns configuration value of NeoFS configuration. If key does not exists, returns nil.

Epoch

func Epoch() int

Epochmethod returns the current epoch number.

InnerRingList

func InnerRingList() []common.IRNode

InnerRingList method returns a slice of structures that contains the public key of an Inner Ring node.
It should be used in notary disabled environment only.

If notary is enabled, look to NeoFSAlphabet role in native RoleManagement contract of the
sidechain.

LastEpochBlock

func LastEpochBlock() int

LastEpochBlock method returns the block number when the current epoch was applied.

Neo Saint Petersburg Competence Center 76

NeoFS Technical Specification Revision: c57acefc

NewEpoch

func NewEpoch(epochNum int)

NewEpoch method changes the epoch number up to the provided epochNum argument. It can be
invoked only by Alphabet nodes. If provided epoch number is less than the current epoch number or
equals it, the method throws panic.

When epoch number is updated, the contract sets storage node candidates as the current network
map. The contract also invokes NewEpochmethod on Balance and Container contracts.

It produces NewEpoch notification.

SetConfig

func SetConfig(id, key, val []byte)

SetConfig key-value pair as a NeoFS runtime configuration value. It can be invoked only by Alphabet
nodes.

Update

func Update(script []byte, manifest []byte, data interface{})

Update method updates contract source code andmanifest. It can be invoked only by committee.

UpdateInnerRing

func UpdateInnerRing(keys []interop.PublicKey)

UpdateInnerRing method updates a list of Inner Ring node keys. It should be used only in notary
disabled environment. It can be invoked only by Alphabet nodes.

If notary is enabled, update NeoFSAlphabet role in native RoleManagement contract of the sidechain.
Use notary service to collect multisignature.

UpdateSnapshotCount

func UpdateSnapshotCount(count int)

UpdateSnapshotCount updates the number of the stored snapshots. If a new number is less than the
old one, old snapshots are removed. Otherwise, history is extended with empty snapshots, so ‘Snap-
shot‘ method can return invalid results for ‘diff = new-old‘ epochs until ‘diff‘ epochs have passed.

Neo Saint Petersburg Competence Center 77

NeoFS Technical Specification Revision: c57acefc

UpdateState

func UpdateState(state int, publicKey interop.PublicKey)

UpdateState method updates the state of a node from the network map candidate list. For notary-
ENABLEDenvironment, txmustbe signedbybothstoragenodeandalphabet. To forceupdatewithout
storage node signature, see ‘UpdateStateIR‘.

For notary-DISABLED environment, the behaviour depends onwho signed the transaction: 1. If it was
signed by alphabet, go into voting. 2. If it was signed by a storage node, emit ‘UpdateState‘ notifica-
tion. 2. Fail in any other case.

The behaviour can be summarized in the following table: | notary \ Signer | Storage node | Alphabet
| Both | | ENABLED | FAIL | FAIL | OK | | DISABLED | NOTIFICATION | OK | OK (same as alphabet) | State
argument defines node state. The only supported state now is (2) -- offline state. Node is removed
from the network map candidate list.

Method panics when invoked with unsupported states.

UpdateStateIR

func UpdateStateIR(state nodeState, publicKey interop.PublicKey)

UpdateStateIR method tries to change the node state in the network map. Should only be invoked in
notary-enabled environment by alphabet.

Version

func Version() int

Version returns the version of the contract.

processing contract

Processing contract is a contract deployed in NeoFSmainchain.

Processing contract pays for all multisignature transaction executionswhen notary service is enabled
in the mainchain. Notary service prepares multisigned transactions, however they should contain
sidechain GAS to be executed. It is inconvenient to ask Alphabet nodes to pay for these transactions:
nodes can change over time, some nodes will spend sidechain GAS faster. It leads to economic insta-
bility.

Processing contract exists to solve this issue. At the Withdraw invocation of NeoFS contract, a user
pays fee directly to this contract. This fee is used to pay for Cheque invocation of NeoFS contract that

Neo Saint Petersburg Competence Center 78

NeoFS Technical Specification Revision: c57acefc

returns mainchain GAS back to the user. The address of the Processing contract is used as the first
signer in the multisignature transaction. Therefore, NeoVM executes Verify method of the contract
and if invocation is verified, Processing contract pays for the execution.

Contract notifications Processing contract does not produce notifications to process.

Contract methods

OnNEP17Payment

func OnNEP17Payment(from interop.Hash160, amount int, data interface{})

OnNEP17Payment is a callback for NEP-17 compatible native GAS contract.

Update

func Update(script []byte, manifest []byte, data interface{})

Update method updates contract source code and manifest. It can be invoked only by the sidechain
committee.

Verify

func Verify() bool

Verify method returns true if transaction contains valid multisignature of Alphabet nodes of the Inner
Ring.

Version

func Version() int

Version returns the version of the contract.

proxy contract

Proxy contract is a contract deployed in NeoFS sidechain.

Proxy contract pays for allmultisignature transactionexecutionswhennotary service is enabled in the
sidechain. Notary service prepares multisigned transactions, however they should contain sidechain
GAS to be executed. It is inconvenient to ask Alphabet nodes to pay for these transactions: nodes can
change over time, some nodes will spend sidechain GAS faster. It leads to economic instability.

Neo Saint Petersburg Competence Center 79

NeoFS Technical Specification Revision: c57acefc

Proxy contract exists to solve this issue. While Alphabet contracts hold all sidechain NEO, proxy con-
tract holds most of the sidechain GAS. Alphabet contracts emit half of the available GAS to the proxy
contract. The address of the Proxy contract is used as the first signer in a multisignature transaction.
Therefore, NeoVM executes Verify method of the contract; and if invocation is verified, Proxy contract
pays for the execution.

Contract notifications Proxy contract does not produce notifications to process.

Contract methods

OnNEP17Payment

func OnNEP17Payment(from interop.Hash160, amount int, data interface{})

OnNEP17Payment is a callback for NEP-17 compatible native GAS contract.

Update

func Update(script []byte, manifest []byte, data interface{})

Update method updates contract source code andmanifest. It can be invoked only by committee.

Verify

func Verify() bool

Verify method returns true if transaction contains valid multisignature of Alphabet nodes of the Inner
Ring.

Version

func Version() int

Version returns the version of the contract.

reputation contract

Reputation contract is a contract deployed in NeoFS sidechain.

Neo Saint Petersburg Competence Center 80

NeoFS Technical Specification Revision: c57acefc

Inner Ring nodes produce data audit for each container during each epoch. In the end, nodes produce
DataAuditResult structure that contains information about audit progress. Reputation contract pro-
vides storage for such structures and simple interface to iterate over available DataAuditResults on
specified epoch.

During settlement process, Alphabet nodes fetch all DataAuditResult structures from the epoch and
execute balance transfers from data owners to Storage and Inner Ring nodes if data audit succeeds.

Contract notifications Reputation contract does not produce notifications to process.

Contract methods

Get

func Get(epoch int, peerID []byte) [][]byte

Getmethod returns a list of all stablemarshaledDataAuditResult structures producedby the specified
Inner Ring node during the specified epoch.

GetByID

func GetByID(id []byte) [][]byte

GetByID method returns a list of all stable marshaled DataAuditResult with the specified id. Use List-
ByEpochmethod to obtain the id.

ListByEpoch

func ListByEpoch(epoch int) [][]byte

ListByEpoch returns a list of IDs that may be used to get reputation data with GetByID method.

Put

func Put(epoch int, peerID []byte, value []byte)

Put method saves DataAuditResult in contract storage. It can be invoked only by Inner Ring nodes. It
does not require multisignature invocations.

Epoch is the epoch number when DataAuditResult structure was generated. PeerID contains public
keys of the Inner Ring node that has produced DataAuditResult. Value contains a stable marshaled
structure of DataAuditResult.

Neo Saint Petersburg Competence Center 81

NeoFS Technical Specification Revision: c57acefc

Update

func Update(script []byte, manifest []byte, data interface{})

Update method updates contract source code andmanifest. It can be invoked only by committee.

Version

func Version() int

Version returns the version of the contract.

subnet contract

Subnet contract is a contract deployed in NeoFS sidechain.

Subnet contract stores andmanages NeoFS subnetwork states. It allows registering and deleting sub-
networks, limiting access to them, and defining a list of the Storage Nodes that can be included in
them.

Contract notifications Put notification. This notification is produced when a new subnetwork is
registered by invoking Put method.

Put
- name: id

type: ByteArray
- name: ownerKey

type: PublicKey
- name: info

type: ByteArray

Deletenotification. Thisnotification isproducedwhensomesubnetwork isdeletedby invokingDelete
method.

Delete
- name: id

type: ByteArray

RemoveNode notification. This notification is produced when some node is deleted by invoking Re-
moveNodemethod.

Neo Saint Petersburg Competence Center 82

NeoFS Technical Specification Revision: c57acefc

RemoveNode
- name: subnetID

type: ByteArray
- name: node

type: PublicKey

Contract methods

AddClientAdmin

func AddClientAdmin(subnetID []byte, groupID []byte, adminPublicKey
interop.PublicKey)↪

AddClientAdmin adds a new client administrator of the specified group in the specified subnetwork.
Must be called by the owner only.

AddNode

func AddNode(subnetID []byte, node interop.PublicKey)

AddNode adds a node to the specified subnetwork. Must be called by the subnet’s owner or the node
administrator only.

AddNodeAdmin

func AddNodeAdmin(subnetID []byte, adminKey interop.PublicKey)

AddNodeAdmin adds a new node administrator to the specified subnetwork.

AddUser

func AddUser(subnetID []byte, groupID []byte, userID []byte)

AddUser adds user to the specified subnetwork and group. Must be called by the owner or the group’s
admin only.

Delete

func Delete(id []byte)

Delete deletes the subnet with the specified id.

Neo Saint Petersburg Competence Center 83

NeoFS Technical Specification Revision: c57acefc

Get

func Get(id []byte) []byte

Get returns info about the subnet with the specified id.

NodeAllowed

func NodeAllowed(subnetID []byte, node interop.PublicKey) bool

NodeAllowed checks if a node is included in the specified subnet.

Put

func Put(id []byte, ownerKey interop.PublicKey, info []byte)

Put creates a new subnet with the specified owner and info.

RemoveClientAdmin

func RemoveClientAdmin(subnetID []byte, groupID []byte, adminPublicKey
interop.PublicKey)↪

RemoveClientAdmin removes client administrator from the specified group in the specified subnet-
work. Must be called by the owner only.

RemoveNode

func RemoveNode(subnetID []byte, node interop.PublicKey)

RemoveNode removes a node from the specified subnetwork. Must be called by the subnet’s owner
or the node administrator only.

RemoveNodeAdmin

func RemoveNodeAdmin(subnetID []byte, adminKey interop.PublicKey)

RemoveNodeAdmin removes node administrator from the specified subnetwork. Must be called by
the subnet owner only.

RemoveUser

func RemoveUser(subnetID []byte, groupID []byte, userID []byte)

RemoveUser removes a user from the specified subnetwork and group. Must be called by the owner
or the group’s admin only.

Neo Saint Petersburg Competence Center 84

NeoFS Technical Specification Revision: c57acefc

Update

func Update(script []byte, manifest []byte, data interface{})

Update method updates contract source code andmanifest. It can be invoked only by committee.

UserAllowed

func UserAllowed(subnetID []byte, user []byte) bool

UserAllowed returns bool that indicates if a node is included in the specified subnet.

Version

func Version() int

Version returns the version of the contract.

Balance transfer details encoding

Alphabet nodes of the Inner Ring use balance.TransferXmethod tomanage balances of the Ne-
oFS users at deposit (mint), withdraw (burn), audit settlements, etc. TransferXmethod has de-
tails argument and transferX notification contains details field. This field contains bytes
that encode the reason of data transfer. First byte of the details field defines the transfer type and
all other bytes provide extra details.

First Byte Description Extra data

0x01 Mint: deposit processed by
NeoFS contract.

32-byte hash of mainchain transaction which
invoked neofs.Depositmethod.

0x02 Burn: cheque processed by
NeoFS contract.

32-byte hash of mainchain transaction which
invoked neofs.Chequemethod.

0x03 Lock: withdraw processed by
NeoFS contract.

32-byte hash of mainchain transaction which
invoked neofs.Withdrawmethod.

0x04 Unlock: withdraw processed
by NeoFS contract but cheque
didn’t process before timeout,
so balance returned to the
account.

Up to 8 bytes of epoch number when asset lock
was removed.

0x10 ContainerFee: put processed
by Container contract.

32-byte Container ID

Neo Saint Petersburg Competence Center 85

NeoFS Technical Specification Revision: c57acefc

First Byte Description Extra data

0x40 AuditSettlement: payment
to Inner Ring node for
processed audit.

8 bytes of epoch (LittleEndian) number when
settlement happened.

0x41 BasicIncomeCollection:
transfer assets from data
owner accounts to the
banking account.

8 bytes of epoch (LittleEndian) number when
settlement happened.

0x42 BasicIncomeDistribution:
transfer assets from banking
account to storage node
owner accounts.

8 bytes of epoch (LittleEndian) number when
settlement happened.

Neo Saint Petersburg Competence Center 86

NeoFS Technical Specification Revision: c57acefc

Reputationmodel

NeoFS reputation system is a subsystem for calculating trust in a node. It is based on a reputation
model for assessing trust, which is, in turn, based on the EigenTrust algorithm designed for peer-to-
peer reputation management.

The EigenTrust algorithm is built on the concept of transitive trust: if peer i trusts any peer j, it will
also trust the peers that j trusts.

The Subject of trust assessment is the one who calculates trust.
The Object of trust assessment is the one whose trust is being calculated.

Configuration

To calculate reputation values using the EigenTrust algorithm, nodes need the values of the variable
parameters of the algorithm. Theseparameters are constant but canbe changed if oneneeds to adapt
the algorithm. For synchronization and correct operation of all nodes, the values are moved to the
Netmap contract and read from it at the beginning of each epoch.

Parameters and their keys in the global configuration of the Netmap contract are as follows:

Key Type Description

EigenTrustIterations uint64 A number of iterations required to calculate
Global Trust.

EigenTrustAlpha string A parameter responsible for the level of
influence of the current node reputation used
when calculating its trust in other nodes.

Managers

Exactly onemanager is selected for eachnode in each epoch. Everymanager is also a child nodeof an-
othermanager. Thus, each network participant plays two roles: a child node for one of themanagers,
and amanager for one of the child nodes.

Managers are required to assess the trust of a child node considering its reputation among other
nodes. Also, managers are direct (and only) participants in the iterative part of the EigenTrust algo-
rithm; in the late stage of the algorithm, they send Global Trust in their child node to the Reputation
contract.

Neo Saint Petersburg Competence Center 87

NeoFS Technical Specification Revision: c57acefc

Defining amanager for a node

To unambiguously determine the manager for the current node, the following rule is used:

1. For the current epoch, a networkmap (a list of active participants) is obtained from theNetmap
of the contract.

2. The resulting array is sorted using HRW hashing, which takes into account the current epoch
number.

3. The index of the current node is determined in a uniquely sorted array - i.
4. The i+1-th node is taken as a manager of the i-th node.

Thus, for the (Netmap,Epoch) pair (one for all) eachnetworkmember canuniquelydefineamanager
for anynetworknode. In this case, forecastingamanager for nodeiat anepochn, generally speaking,
is a nontrivial task because of the variability of the network map. Also, the rule allows to select a
manager for a node pseudo-randomly every epoch.

Taken together, all the above makes it difficult for rogue nodes to cluster for profit.

Local Trust

Local Trust trust of one node to another, calculated using only statistical information of their peer-to-
peer network interactions. The Subject and Object of such a trust are peer-to-peer nodes.

Subject and Object of a trust

Anynode is the Subject of evaluation. TheObject of trust is any nodeother than the Subject. InNeoFS,
nodes do not evaluate their own performance because the default is “every node trusts itself”.

The evaluation criterion is successful (non error in sense of network interaction) execution of one of
the RPC calls:

1. Put
2. Get
3. Search
4. GetRange
5. GetRangeHash
6. Head
7. Delete

A Subject of the Local Trust assessment stores an assessment of the experience of communication
with the Objects in LocalStoragewhile interacting with them. Local reputation only makes sense

Neo Saint Petersburg Competence Center 88

NeoFS Technical Specification Revision: c57acefc

in context with some epoch value, which should be taken into account when storing and transferring
values.

Calculating trust

Using all these formulations, terms and statements, we recognize that Local Trust is only applicable in
the context of a certain epoch. It means that peer-to-peer interactions of nodes for an epoch n affect
only Local Trusts calculated in the epoch n. That fact is not emphasized explicitly further.

Assessment of interactionswith a node is a binary value, i.e. equals either0(false) or1(true).

Let 𝑠𝑎𝑡(𝑖, 𝑗) be a number of positive assessments of interactions with node j by node i.

Let 𝑢𝑛𝑠𝑎𝑡(𝑖, 𝑗) be a number of negative assessments of interactions with node j by node i.

Therefore, the total number of interactions between node i and node j:

𝑎𝑙𝑙(𝑖, 𝑗) ∶= 𝑠𝑎𝑡(𝑖, 𝑗) + 𝑢𝑛𝑠𝑎𝑡(𝑖, 𝑗).

Then:

𝑆𝑖𝑗 = 𝑠𝑎𝑡(𝑖, 𝑗)
𝑎𝑙𝑙(𝑖, 𝑗) ∈ [0, 1]

is the averaged assessment of interactions with node j by node i.

Let us define 𝐶𝑖,𝑗 as following:

𝐶𝑖,𝑗 ∶=
⎧{{
⎨{{⎩

𝑆𝑖,𝑗
∑𝑗 𝑆𝑖,𝑗

, ∑
𝑗

𝑆𝑖,𝑗 ≠ 0

1
𝑁 − 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, ∈ [0, 1],

where 𝑁 is the number of network participants. 𝐶𝑖,𝑗 according to the chapter 4.5 of the EigenTrust
article22 is normalized trust of node i to node j. This value is taken as the final Local reputation of
node j for node i.

Transport

At the end of each epoch, all child nodes must announce the accumulated statistics — the set of all
Local Trusts for the epoch that has just finished — to their managers.
22http://ilpubs.stanford.edu:8090/562/1/2002-56.pdf

Neo Saint Petersburg Competence Center 89

http://ilpubs.stanford.edu:8090/562/1/2002-56.pdf

NeoFS Technical Specification Revision: c57acefc

The transfer is made by calling manager’s AnnounceLocalTrust gRPCmethod23.

Each node should not only collect and transmit its local Trusts, but also be ready to accept (act as a
server) and correctly process similar data from another node, i.e. act as a manager.

Global Trust

Global Trust the result of the EigenTrust algorithm is the trust in the network participant, which has
been obtained regarding all Local Trusts of all nodes.

Subject and Object of a trust

The Subject of the assessment is the entire system. Any node in the network is an Object of trust.

The evaluation criterion is the aggregate of Local Trust of all network participants to the current node,
but adjusted for similar Local Trust to each participant from the rest of the network.

Calculating trust

Each manager retrieves the Local Trust value of its child at the end of each epoch and stores it in the
DaughterStorage. The further task of eachmanager is to calculate the Global Trust of the system
in its child node, and also to transfer all the information it has to another managers so that they, in
turn, can perform a similar task.

Global Trust is calculated iteratively. While calculating GlobalTrust, according to the EigenTrust
algorithm, managers should exchange “intermediate” trust values, the so-called Intermedi-
ateTrust. With the help of these values, managers at each iteration approximate (recalculate the
results of the previous iteration) the value of the Global Trust to the common Global Value Limit:
𝑇 = [𝑡0, ..., 𝑡𝑛], where 𝑡𝑖 is the limiting Global Trust value in node i.

Using all these formulations, terms and statements, we recognize that Local Trust is only applicable in
the context of a certain epoch. It means that peer-to-peer interactions of nodes for an epoch n affect
only Global Trusts calculated in the epoch n. IntermediateTrust values, likewise, only make
sense when used in the context of some epoch and iteration number. That fact is not emphasized
explicitly further.

The iterative formula:

23https://github.com/nspcc-dev/neofs-api/blob/master/reputation/service.proto#L18

Neo Saint Petersburg Competence Center 90

https://github.com/nspcc-dev/neofs-api/blob/master/reputation/service.proto#L18

NeoFS Technical Specification Revision: c57acefc

𝑡𝑘+1
𝑗 = (1 − 𝛼)

𝑛
∑
𝑗=0

𝐶𝑖𝑗𝑡𝑘
𝑖 + 𝛼𝑡0

𝑗

,

where𝐶𝑖𝑗 is Local Trust of nodei tonodej;𝛼 is a value that determines the influenceof the 𝑡0
𝑖 (“blind”

trust in node i) - on the final result;𝐶𝑖,𝑗𝑡𝑘
𝑖 , in the introduced terminology, is IntermediateTrust

which has been transferred by the manager of node i to the manager of node j. In order for the
algorithm to work synchronously, the number of iterations and𝛼 is read by all nodes from the Global
Configuration of the Netmap contract at the beginning of each epoch.

Actually, blind trust 𝑡0
𝑖 can be different for different nodes. It can take into account how long ago a

node joined the network, whether the node belongs to the developers of the network, etc. In the
current implementation 𝑡0

𝑖 = 1
𝑁 , ∀𝑖, where 𝑁 is the number of network participants in the current

epoch.

Transport

In order for themanager of node j to be able to calculate 𝑡𝑘+1
𝑗 , which is the intermediate Global Trust

(this is not IntermediateTrust) to its child node, the following is essential:

1. The manager must have all the existing IntermediateTrusts - 𝐶𝑖𝑗𝑡𝑘
𝑖 , ∀𝑖 ≠ 𝑗.

2. The manager must calculate and transfer all IntermediateTrusts, according to the infor-
mation received from its child node, that is, calculate and transfer all existing 𝐶𝑗𝑖𝑡𝑘

𝑗 , ∀𝑖 ≠ 𝑗.

To do this, the manager must act both as a client and a server. The transfer itself is run by calling the
AnnounceIntermediateResult gRPCmethod24.

Themanager should store intermediateIntermediateTrust values in ConsumerStorage con-
sidering both the epoch and the iteration numbers. Each manager must transmit them based on the
number of iterations and the number of blocks in the current epoch.

24https://github.com/nspcc-dev/neofs-api/blob/master/reputation/service.proto#L22

Neo Saint Petersburg Competence Center 91

https://github.com/nspcc-dev/neofs-api/blob/master/reputation/service.proto#L22

NeoFS Technical Specification Revision: c57acefc

Incentivemodel

Economic of NeoFS uses GAS stored in NeoFS contract in the mainchain. It increases with user de-
posits and decreases after withdrawals. Therefore, assets don’t appear out of nowhere and don’t go
nowhere. All internal accounts and settlements are managed by Balance contract in the sidechain.
Every epochmany settlements take place, which we can divide into two groups:

• data storage payments,
• service fees.

Data storage payments

Data storage payments are made once an epoch. Epochs are measured in sidechain blocks and can
change their duration against real time. Thus, estimated profit and expense for an hour, week or
month may vary depending on epoch duration. Payment operations are not specified in the proto-
col. Storage node owners should check payment details themselves and delete unpaid data if they
want to free some storage space.

Data storage payments are also made in two steps:

• basic income payments,
• data audit payments.

Basic income

Basic income provides asset flow fromdata owners to storage node owners when data owners do not
create storage groups to trigger audit and audit payments. Basic income settlements are calculated
per container. Exact payment price is calculated froman average data size estimated for a single node
of a container, basic income rate in NeoFS network configuration, and the number of nodes in the
container.

Basic income rate is a NeoFS network configuration value managed by Alphabet nodes of the Inner
Ring. It is stored as GAS per GiB value. Once an epoch, Storage Nodes calculate the average data size
of each container node store. This data is then accumulated inside the container nodes; once done,
the aggregated value is stored in the container contract.

WhenepochN starts, InnerRingnodesestimate thedata size for every registeredcontainer fromepoch
N-1. To do so, they use the formula given below

𝑆𝑖𝑧𝑒 ⋅ 𝑅𝑎𝑡𝑒
230

Neo Saint Petersburg Competence Center 92

NeoFS Technical Specification Revision: c57acefc

GAS, where 𝑆𝑖𝑧𝑒 is the estimated container size, 𝑅𝑎𝑡𝑒 is the basic income rate. The owner of the
container will be charged

𝑆𝑖𝑧𝑒 ⋅ 𝑅𝑎𝑡𝑒
230 ⋅ 𝑁

GAS, where 𝑁 is the number of nodes in the container.

Storage
nodes

Storage
nodes

Netmap
contract

Netmap
contract

Container
contract

Container
contract

Inner Ring
Nodes

Inner Ring
Nodes

Balance
contract

Balance
contract

New epoch notification

1\3 of epoch

Start estimation

Start estimation notification

Exchange estimations

Stop estimation

Stop estimation notification

Estimate container sizes

2\3 of epoch

Get estimations

Transfer to bank account

3\3 of epoch

Get balance of bank account

Transfer to Storage Node accounts

New epoch

Figure 22: Basic income collection

Neo Saint Petersburg Competence Center 93

NeoFS Technical Specification Revision: c57acefc

Data audit

Data audit is triggered if a container contains Storage Group objects. Data audit settlements are also
calculated per container. Exact payment price is calculated from Storage Node cost attributes, total
size of successfully audited storage groups, and the number of nodes in the container.

Storage groups define the subset of objects inside a container and provides extra meta information
for data audit. Objects that are not covered by a storage group are not tested for integrity or safety by
Inner Ring nodes. Inner Ring nodes performdata audit permanently. At the start of epochN, Alphabet
nodesof the Inner Ring create settlements of all successfully checkedStorageGroups fromepochN-1.
To do so, they use the formula given below

∑𝑘
𝑖=1 𝑆𝐺𝑆𝑖𝑧𝑒𝑖

230 ⋅ 𝑃 𝑟𝑖𝑐𝑒

GAS, where 𝑆𝐺𝑆𝑖𝑧𝑒 is the total size of objects covered by the storage group (in bytes), 𝑃𝑟𝑖𝑐𝑒 is a
storage node attribute (n GAS per GiB), 𝑘 is the number of successfully checked Storage Groups in the
container. The owner of the container will be charged

𝑛
∑
𝑗=1

∑𝑘
𝑖=1 𝑆𝐺𝑆𝑖𝑧𝑒𝑖

230 ⋅ 𝑃 𝑟𝑖𝑐𝑒𝑗

GAS, where 𝑛 is the number of nodes in the container.

Service fees

Container creation fee

To create a container, a data owner should pay fee. It is calculated as 7 ⋅ 𝑓𝑒𝑒, where 𝑓𝑒𝑒 is a value
from NeoFS network configuration (ContainerFee). Each Alphabet node gets 𝑓𝑒𝑒 GAS during this
operation.

Audit result fee

Eachgeneratedaudit resultmustbepaid forby thecontainerowner. Dataownerpays𝑓𝑒𝑒 set inNeoFS
network configuration (AuditFee) per one audited container.

Neo Saint Petersburg Competence Center 94

NeoFS Technical Specification Revision: c57acefc

Inner Ring candidate fee

To become a part of the Inner Ring list, an Inner Ring candidate must register its key in NeoFS con-
tract. This operation transfers to NeoFS contract 𝑓𝑒𝑒 value that is set in NeoFS network configuration
(InnerRingCandidateFee).

Withdraw fee

Towithdrawassets, Alphabet nodesneedmainchainGAS to invokeChequemethodofNeoFS contract
that transfers assets back to the user. This GAS is paid by the user at Withdraw invocation. In notary
enabled environment, the user pays 𝑓𝑒𝑒 value set in NeoFS network configuration (WithdrawFee).
In notary disabled environment, the user pays 7 ⋅ 𝑓𝑒𝑒.

Neo Saint Petersburg Competence Center 95

NeoFS Technical Specification Revision: c57acefc

NeoFS API v2

NeoFSAPI v2 is focusingon simplificationof previous versionsof API usedduringearly stagesofNeoFS
development. The new structure makes it easier to implement NeoFS API in different languages and
for different platforms.

All data structures are defined in protobuf format and grouped together with corresponding services
into comparatively independent packages. This allows to significantly simplify development (auto-
matically generate for most parts) of a library for working in NeoFS. One can start with a required
minimum instead of implementing the whole package right in the beginning. We tried to make the
packages as independent as possible, and thus minimizing horizontal dependency.

For transport layer, by default we assume that gRPC will be used. These are popular, simple, and
time-tested tools relevant for most languages and platforms. Although gRPC is used now, we have
everything to transfer structures through other protocols, e.g. JSON-RPC.

Nodes and their identification

NeoFS API does not differentiate client and server. All members of the network communicate using
the same protocol. The protocol does not distinguish between a small Command Line Interface (CLI)
utility and a full-featured storage node. Both are nodes of the same p2p network.

A NeoFS Node is identified by a pair of keys for encryption and decryption.

Public key is encoded in compressed form according to ANSI x9.6225 (section 4.3.6).

Elliptic curve secp256r1

Private key size 32 bytes

Public key size 33 bytes

Example keys:

private key 6af2b8b41ad2e78f19aa0bc4fb5cb746d61ad44ebf9ba2a43b6e5cc3e46715a6

public key 03065e513fdaccc4556e7de010bf3d5445552357fb17928f3bd8cea33e092a64eb

Neo 3.0 address Na6DELLB6dtnPmsD7y1HFjVZNZp8S5BdCJ

The key format is compatible with the Neo 3.0 Wallets keys. It lets smart contracts verify the sender
by public keys. Thus, each member may have an internal NEP-5 balance, where NEO Wallet address

25https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.202.2977&rep=rep1&type=pdf

Neo Saint Petersburg Competence Center 96

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.202.2977&rep=rep1&type=pdf

NeoFS Technical Specification Revision: c57acefc

is formed from a public key, as it happens in Neo 3.0.

NeoFS is a peer-to-peer network, which means that the clients are equal and each of them needs a
pair of asymmetric keys. To create a container and place an object, one should have GASUtility Token
on NeoFS sidechain internal balance. When a user makes a deposit from his NEO Wallet, operations
of container creation and object placement should be carried out with the same key (if no other keys
have been associated with that OwnerID).

Requests and Responses

All request and responses in NeoFS API v2 have the same structure. Only their .body fields are dif-
ferent. Any request consists of body, meta headers, and verification headers. See the corresponding
paragraph in the relevant package description section to learn about the structure of particular parts
of a message in detail.

The .body field delivers the structure with the data making up the request or a response to it.

The .meta_header contains metadata to the request.

The .verify_header carries cryptographic signatures for .body and .meta_header. It allows
to check if the message is authentic, see if it has been correctly transferred between two nodes, and
provide an assumed route of the message where each intermediate node has left its signature.

Signing RPCmessages and data structures

The messages exchanged between the users of the network involves ECDSA signatures. These signa-
tures is defined in refs.Signature type structure. The .sign field keeps byte representation of
a signature, while .key field contains public key to verify the signature.

Stable serialization

To sign messages or structures, one should first turn them into a byte series. NeoFS protocol is de-
scribed in protocol buffers v3 format. Protocol Buffers v3 defines the format of serialization for all
messages, but specification26 allows serialization process to be unstable: the same message can be
encoded correctly by various methods. The field order in the encodedmessage may be changed ran-
domly.

26https://developers.google.com/protocol-buffers/docs/encoding#order

Neo Saint Petersburg Competence Center 97

https://developers.google.com/protocol-buffers/docs/encoding#order

NeoFS Technical Specification Revision: c57acefc

When amessage is serialized, there is no guaranteed order for how its known or unknown fields
should be written. Serialization order is an implementation detail and the details of any partic-
ular implementation may change in the future. Therefore, protocol buffer parsers must be able
to parse fields in any order.

To generate unified signatures for messages, all NeoFS nodesmust stably serialize structures and
messages described in the protocol.

Serialization is considered stable when it does no change the order of the fields in an encoded mes-
sage. All fields are encoded in ascending order regarding their numbers specified in protocol descrip-
tion.

message Foo {
bytes one = 1; // C0 FF EE
bytes two = 2; // BE EF

}

StableSerialize(Foo) =
[0A 03 C0 FF EE][12 02 BE EF] // OK for GRPC

// OK for NeoFS Signature

UnstableSerialize(Foo) =
[12 02 BE EF][0A 03 C0 FF EE] // OK for GRPC

// FAIL for NeoFS Signature

Most auto-generated serializers behave occasionally stable, but there is no guarantee that theywill re-
main the same in future. Clients exploiting auto-generated serializers should be aware of such risk.

Signature generation format

The signature of a message or a structure should be stably serialized. The serialized byte array is
hashed with SHA-512. The obtained signature (R,S) is enciphered uncompressed according to ANSI
x9.62 (section 4.3.6)

Elliptic curve secp256r1

Hash function SHA-512

Signature size 65 bytes

message Foo { bytes one = 1; // C0 FF EE bytes two = 2; // BE EF }

Neo Saint Petersburg Competence Center 98

NeoFS Technical Specification Revision: c57acefc

private key = 6af2b8b41ad2e78f19aa0bc4fb5cb746d61ad44ebf9ba2a43b6e5cc3e46715a6
StableSerialize(Foo) = 0a03coffee1202beaf
SHA-512(StableSerialize(Foo)) =
5efec2432616ca322824a7140d5ac332c6a3a388d2746f8cff6e48909d36829f9cb8586718d457c9540112d52ea2da2b448b2f6f689b3f5813c185b426267ed2

R,S = Sign(private key, SHA-512(StableSerialize(Foo)), secp256r1)
R = e13f3e71db728b85acc4cea688d3dae6b01453d2bff1b5ebc2695cedfef7fdd5
S = 2ecbc0cc0ae4f70696682b4e358a4b698d74f9b708c13470e5c808fe04f526e5

Signature =
04e13f3e71db728b85acc4cea688d3dae6b01453d2bff1b5ebc2695cedfef7fdd52ecbc0cc0ae4f70696682b4e358a4b698d74f9b708c13470e5c808fe04

Signature function uses random number generator, which grants different signatures to the same
message with each signing cycle.

Signature chaining in requests and responses

Thestructureand theorderof signatures forRequestandResponsemessagesare the same. There-
fore, everything about Request message written below is true for Response on corresponding
structures.

All signatures are kept in RequestVerificationHeader structure which is filled before a mes-
sage is sent. The NeoFS Nodes involved in the transmission and resigning of themessages fill in their
own structure copies and put them in origin field recursively.

If a user sends a request directly to a receiver, the chain consists of one RequestVerification-
Header only.

Neo Saint Petersburg Competence Center 99

NeoFS Technical Specification Revision: c57acefc

Sender

VerificationHeader2

RelayNode

BodySignature:

Origin

MetaSignature:
OriginSignature:

BodySignature:

Origin: nil

MetaSignature:
OriginSignature:

VerificationHeader3
BodySignature:

Origin

MetaSignature:
OriginSignature:

RelayNode

VerificationHeader1

Figure 23: Signature chain verification

The RequestVerificationHeader always carries three signatures:

• Message body signature
• Meta header signature
• Verification header signature

Message body signature

EachRPCmessage has a field calledBody. This structure is serialized stably; it is signed by the sender
only. If a message is retransmitted, this signature is never set in the new copies of Verification-
Header.

Sender

VerificationHeader2

RelayNode

BodySignature: nil

Origin

MetaSignature:
OriginSignature:

BodySignature: Sign(Body)

Origin: nil

MetaSignature:
OriginSignature:

VerificationHeader3
BodySignature: nil

Origin

MetaSignature:
OriginSignature:

RelayNode

VerificationHeader1

Figure 24: Body signature verification

Neo Saint Petersburg Competence Center 100

NeoFS Technical Specification Revision: c57acefc

Meta header signature

Each RPC meassage has a field called meta_header. Meta headers are changed for every retransmis-
sion (e.g. TTL is reduced) and form an equivalent chain. meta_signature field contains the signature
for an already organized structure of the meta header.

Sender

VerificationHeader2

RelayNode

BodySignature: nil

Origin

MetaSignature: Sign(Meta2)

OriginSignature:

BodySignature: Sign(Body)

Origin: nil

MetaSignature: Sign(Meta1)

OriginSignature:

VerificationHeader3
BodySignature: nil

Origin

MetaSignature: Sign(Meta3)

OriginSignature:

RelayNode

VerificationHeader1

MetaHeader2 MetaHeader3MetaHeader1

Epoch: 1994

Origin: nil

TTL: 5
...

Epoch: 1994

Origin

TTL: 4
...

Epoch: 1994

Origin

TTL: 3
...

Figure 25:Meta header signature verification

Verification header signature

While putting a new verification header, intermediate nodes should sign the preceding verification
header andput the signature in theorigin_signature field. The requestor doesnot set this signature.

Neo Saint Petersburg Competence Center 101

NeoFS Technical Specification Revision: c57acefc

Sender

VerificationHeader2

RelayNode

BodySignature: nil

Origin

MetaSignature: Sign(Meta2)
OriginSignature: Sign(VerifHdr1)

BodySignature: Sign(Body)

Origin: nil

MetaSignature: Sign(Meta1)
OriginSignature: nil

VerificationHeader3
BodySignature: nil

Origin

MetaSignature: Sign(Meta3)
OriginSignature: Sign(VerifHdr2)

RelayNode

VerificationHeader1

MetaHeader2 MetaHeader3MetaHeader1

Epoch: 1994

Origin: nil

TTL: 5
...

Epoch: 1994

Origin

TTL: 4
...

Epoch: 1994

Origin

TTL: 3
...

Figure 26: Verification header signature verification

Container service signatures

In addition to the RPC requests themselves there is a need to sign followong structures:

• Container in container.PutRequest.Bodymessage
• Container ID in container.DeleteRequest.Bodymessage
• Extended ACL table structure in container.SetExtendedACLRequest.Bodymessage

Those structures’ signature is verified by smart contracts, hence it must be compatible with Neo Vir-
tual Machine. The signature format supported by Neo Virtual Machine is different from the format
described in previous sections.

A stably serialized message is hashed using SHA-256 algorithm. The resulting signature (R,S) is en-
coded uncompressed as a concatenation of the 32-byte sized coordinates of R and S.

Elliptic curve secp256r1

Hash function SHA-256

Signature size 64 bytes

message ContainerID {

Neo Saint Petersburg Competence Center 102

NeoFS Technical Specification Revision: c57acefc

bytes value = 1; // 29fe85bb8c36f5cb676e256113193235a2ba0c0abe6a71f84654afa92801d17a
}

private key = 6af2b8b41ad2e78f19aa0bc4fb5cb746d61ad44ebf9ba2a43b6e5cc3e46715a6
StableSerialize(Foo) = 0a2029fe85bb8c36f5cb676e256113193235a2ba0c0abe6a71f84654afa92801d17a
SHA-256(StableSerialize(Foo)) = a086acbc03862c01bdff3f850b8254f1be9a6d56ec5661c6efba0319654210cc

R,S = Sign(private key, SHA-256(StableSerialize(Foo)), secp256r1)
R = 1233d0e5c87a24c5a56c518596da64b1ceb8d667723b0030c4888b524229ff8a
S = d4e42952d516c2959ba1825e2768cbfe3f4336e7a14c635236ae2ea95fa50435

Signature =
1233d0e5c87a24c5a56c518596da64b1ceb8d667723b0030c4888b524229ff8ad4e42952d516c2959ba1825e2768cbfe3f4336e7a14c635236ae2ea95fa50435

Object service and Session signatures

Object service and the rest of the services and structures in NeoFS API v2 use the same signature for-
mat as in RPCmessages signing.

Elliptic curve secp256r1

Hash function SHA-512

Signature size 65 bytes

Neo Saint Petersburg Competence Center 103

NeoFS Technical Specification Revision: c57acefc

neo.fs.v2.accounting

Service “AccountingService”

Accounting service provides methods for interaction with NeoFS sidechain via other NeoFS nodes to
get information about the account balance. Deposit and Withdraw operations can’t be implemented
here, as they require Mainnet NeoFS smart contract invocation. Transfer operations between internal
NeoFS accounts are possible if both use the same token type.

Method Balance

Returns the amount of funds in GAS token for the requested NeoFS account.

Statuses: - OK (0, SECTION_SUCCESS): balance has been successfully read; - Common failures (SEC-
TION_FAILURE_COMMON).

Request Body: BalanceRequest.Body

To indicate the account for which the balance is requested, its identifier is used. It can be any existing
account in NeoFS sidechain Balance smart contract. If omitted, client implementation MUST set it
to the request’s signer OwnerID.

Field Type Description

owner_id OwnerID Valid user identifier in OwnerID format for which
the balance is requested. Required field.

Response Body BalanceResponse.Body

Theamount of funds inGAS token for theOwnerID’s account requested. Balance is given in theDec-
imal format to avoid precision issues with rounding.

Field Type Description

balance Decimal Amount of funds in GAS token for the requested account.

Neo Saint Petersburg Competence Center 104

NeoFS Technical Specification Revision: c57acefc

Message Decimal

Standard floating point data type can’t be used in NeoFS due to inexactness of the result when doing
lots of small number operations. To solve the lost precision issue, specialDecimal format is used for
monetary computations.

Please see The General Decimal Arithmetic Specification27 for detailed problem description.

Field Type Description

value int64 Number in the smallest Token fractions.

precision uint32 Precision value indicating howmany smallest
fractions can be in one integer.

neo.fs.v2.acl

Message BearerToken

BearerToken allows to attach signed Extended ACL rules to the request in RequestMetaHeader. If
container’s Basic ACL rules allow, the attached rule set will be checked instead of one attached to the
container itself. Just like JWT28, it has a limited lifetime and scope, hence can be used in the similar
use cases, like providing authorisation to externally authenticated party.

BearerToken canbe issuedonly by the container’s owner andmust be signedusing the key associated
with the container’s OwnerID.

Field Type Description

body Body Bearer Token body

signature Signature Signature of BearerToken body

Message BearerToken.Body

Bearer Token body structure contains Extended ACL table issued by the container owner with addi-
tional information preventing token abuse.
27http://speleotrove.com/decimal/
28https://jwt.io

Neo Saint Petersburg Competence Center 105

http://speleotrove.com/decimal/
https://jwt.io

NeoFS Technical Specification Revision: c57acefc

Field Type Description

eacl_table EACLTable Table of Extended ACL rules to use instead of the
ones attached to the container. If it contains
container_id field, bearer token is only valid
for this specific container. Otherwise, any
container of the same owner is allowed.

owner_id OwnerID OwnerID defines to whom the token was issued.
It must match the request originator’s OwnerID.
If empty, any token bearer will be accepted.

lifetime TokenLifetime Token expiration and valid time period
parameters

Message BearerToken.Body.TokenLifetime

Lifetime parameters of the token. Field names taken from rfc751929.

Field Type Description

exp uint64 Expiration Epoch

nbf uint64 Not valid before Epoch

iat uint64 Issued at Epoch

Message EACLRecord

Describes a single eACL rule.

Field Type Description

operation Operation NeoFS request Verb to match

action Action Rule execution result. Either allows or denies
access if filters match.

filters Filter List of filters to match and see if rule is applicable

29https://tools.ietf.org/html/rfc7519

Neo Saint Petersburg Competence Center 106

https://tools.ietf.org/html/rfc7519

NeoFS Technical Specification Revision: c57acefc

Field Type Description

targets Target List of target subjects to apply ACL rule to

Message EACLRecord.Filter

Filter to check particular properties of the request or the object.

By default key field refers to the corresponding object’s Attribute. Some Object’s header fields
can also be accessed by adding $Object: prefix to the name. Here is the list of fields available via
this prefix:

• $Object:version
version

• $Object:objectID
object_id

• $Object:containerID
container_id

• $Object:ownerID
owner_id

• $Object:creationEpoch
creation_epoch

• $Object:payloadLength
payload_length

• $Object:payloadHash
payload_hash

• $Object:objectType
object_type

• $Object:homomorphicHash
homomorphic_hash

Please note, that if request or response does not have object’s headers of full object (Range, Range-
Hash, Search, Delete), it will not be possible to filter by object header fields or user attributes. From
the well-known list only $Object:objectID and $Object:containerID will be available, as
it’s possible to take that information from the requested address.

Neo Saint Petersburg Competence Center 107

NeoFS Technical Specification Revision: c57acefc

Field Type Description

header_type HeaderType Define if Object or Request header will be used

match_type MatchType Match operation type

key string Name of the Header to use

value string Expected Header Value or pattern to match

Message EACLRecord.Target

Target to apply ACL rule. Can be a subject’s role class or a list of public keys to match.

Field Type Description

role Role Target subject’s role class

keys bytes List of public keys to identify target subject

Message EACLTable

Extended ACL rules table. A list of ACL rules defined additionally to Basic ACL. Extended ACL rules can
be attached to a container and can be updated ormay be defined inBearerToken structure. Please
see the corresponding NeoFS Technical Specification section for detailed description.

Field Type Description

version Version eACL format version. Effectively, the version of API
library used to create eACL Table.

container_id ContainerID Identifier of the container that should use given
access control rules

records EACLRecord List of Extended ACL rules

Emun Action

Rule execution result action. Either allows or denies access if the rule’s filters match.

Neo Saint Petersburg Competence Center 108

NeoFS Technical Specification Revision: c57acefc

Number Name Description

0 ACTION_UNSPECIFIED Unspecified action, default value

1 ALLOW Allow action

2 DENY Deny action

Emun HeaderType

Enumeration of possible sources of Headers to apply filters.

Number Name Description

0 HEADER_UNSPECIFIEDUnspecified header, default value.

1 REQUEST Filter request headers

2 OBJECT Filter object headers

3 SERVICE Filter service headers. These are not processed
by NeoFS nodes and exist for service use only.

EmunMatchType

MatchType is an enumeration of match types.

Number Name Description

0 MATCH_TYPE_UNSPECIFIED Unspecified match type, default value.

1 STRING_EQUAL Return true if strings are equal

2 STRING_NOT_EQUAL Return true if strings are different

Emun Operation

Request’s operation type to match if the rule is applicable to a particular request.

Neo Saint Petersburg Competence Center 109

NeoFS Technical Specification Revision: c57acefc

Number Name Description

0 OPERATION_UNSPECIFIED Unspecified operation, default value

1 GET Get

2 HEAD Head

3 PUT Put

4 DELETE Delete

5 SEARCH Search

6 GETRANGE GetRange

7 GETRANGEHASH GetRangeHash

Emun Role

Target role of the access control rule in access control list.

Number Name Description

0 ROLE_UNSPECIFIEDUnspecified role, default value

1 USER User target rule is applied if sender is the owner
of the container

2 SYSTEM System target rule is applied if sender is a
storage node within the container or an inner
ring node

3 OTHERS Others target rule is applied if sender is neither
a user nor a system target

neo.fs.v2.audit

Message DataAuditResult

DataAuditResult keeps record of conducted Data Audits. The detailed report is generated sepa-
rately.

Neo Saint Petersburg Competence Center 110

NeoFS Technical Specification Revision: c57acefc

Field Type Description

version Version Data Audit Result format version. Effectively, the
version of API library used to report
DataAuditResult structure.

audit_epoch fixed64 Epoch number when the Data Audit was
conducted

container_id ContainerID Container under audit

public_key bytes Public key of the auditing InnerRing node in a
binary format

complete bool Shows if Data Audit process was complete in time
or if it was cancelled

requests uint32 Number of request done at PoR stage

retries uint32 Number of retries done at PoR stage

pass_sg ObjectID List of Storage Groups that passed audit PoR stage

fail_sg ObjectID List of Storage Groups that failed audit PoR stage

hit uint32 Number of sampled objects under the audit
placed in an optimal way according to the
containers placement policy when checking PoP

miss uint32 Number of sampled objects under the audit
placed in suboptimal way according to the
containers placement policy, but still at a
satisfactory level when checking PoP

fail uint32 Number of sampled objects under the audit
stored inconsistently with the placement policy or
not found at all when checking PoP

pass_nodes bytes List of storage node public keys that passed at
least one PDP

fail_nodes bytes List of storage node public keys that failed at least
one PDP

Neo Saint Petersburg Competence Center 111

NeoFS Technical Specification Revision: c57acefc

neo.fs.v2.container

Service “ContainerService”

ContainerService provides API to interact with Container smart contract in NeoFS sidechain
via other NeoFS nodes. All of those actions can be done equivalently by directly issuing transactions
and RPC calls to sidechain nodes.

Method Put

Put invokes Container smart contract’s Put method and returns response immediately. After a
new block is issued in sidechain, request is verified by Inner Ring nodes. After one more block in
sidechain, the container is added into smart contract storage.

Statuses: -OK (0, SECTION_SUCCESS):
request to save thecontainerhasbeensent to thesidechain; -Commonfailures (SECTION_FAILURE_COMMON).

Request Body: PutRequest.Body

Container creation request has container structure’s signature as a separate field. It’s not stored in
sidechain, just verified on container creation by Container smart contract. ContainerID is a
SHA256 hash of the stable-marshalled container strucutre, hence there is no need for additional sig-
nature checks.

Field Type Description

container Container Container structure to register in NeoFS

signature SignatureRFC6979 Signature of a stable-marshalled container
according to RFC-6979.

Response Body PutResponse.Body

Container put response body contains information about the newly registered container as seen by
Container smart contract. ContainerID can be calculated beforehand from the container struc-
ture and compared to the one returned here to make sure everything has been done as expected.

Field Type Description

container_id ContainerID Unique identifier of the newly created container

Neo Saint Petersburg Competence Center 112

NeoFS Technical Specification Revision: c57acefc

Method Delete

Delete invokes Container smart contract’s Deletemethod and returns response immediately.
After a new block is issued in sidechain, request is verified by Inner Ring nodes. After one more block
in sidechain, the container is added into smart contract storage.

Statuses: -OK (0, SECTION_SUCCESS):
request to remove the container has been sent to the sidechain; - Common failures (SEC-
TION_FAILURE_COMMON).

Request Body: DeleteRequest.Body

Container removal request bodyhas signedContainerID as a proof of the container owner’s intent.
The signaturewill be verified byContainer smart contract, so signing algorithmmust be supported
by NeoVM.

Field Type Description

container_id ContainerID Identifier of the container to delete from NeoFS

signature SignatureRFC6979 ContainerID signed with the container
owner’s key according to RFC-6979.

Response Body DeleteResponse.Body

DeleteResponse has an empty body because delete operation is asynchronous and done via con-
sensus in Inner Ring nodes.

Method Get

Returns container structure from Container smart contract storage.

Statuses: -OK (0, SECTION_SUCCESS):
container has been successfully read; - Common failures (SECTION_FAILURE_COMMON); - CON-
TAINER_NOT_FOUND (3072, SECTION_CONTAINER):
requested container not found.

Request Body: GetRequest.Body

Get container structure request body.

Neo Saint Petersburg Competence Center 113

NeoFS Technical Specification Revision: c57acefc

Field Type Description

container_id ContainerID Identifier of the container to get

Response Body GetResponse.Body

Get container response body does not have container structure signature. It has been already verified
upon container creation.

Field Type Description

container Container Requested container structure

signature SignatureRFC6979 Signature of a stable-marshalled container
according to RFC-6979.

session_token SessionToken Session token if the container has been created
within the session

Method List

Returns all owner’s containers from ‘Container‘ smart contract’ storage.

Statuses: -OK (0, SECTION_SUCCESS):
container list has been successfully read; - Common failures (SECTION_FAILURE_COMMON).

Request Body: ListRequest.Body

List containers request body.

Field Type Description

owner_id OwnerID Identifier of the container owner

Response Body ListResponse.Body

List containers response body.

Neo Saint Petersburg Competence Center 114

NeoFS Technical Specification Revision: c57acefc

Field Type Description

container_ids ContainerID List of ContainerIDs belonging to the
requested OwnerID

Method SetExtendedACL

Invokes ‘SetEACL’ method of ’Container‘ smart contract and returns response immediately. After one
more block in sidechain, changes in an Extended ACL are added into smart contract storage.

Statuses: -OK (0, SECTION_SUCCESS):
request to save container eACL has been sent to the sidechain; - Common failures (SEC-
TION_FAILURE_COMMON).

Request Body: SetExtendedACLRequest.Body

Set Extended ACL request body does not have separate ContainerID reference. It will be taken
from EACLTable.container_id field.

Field Type Description

eacl EACLTable Extended ACL table to set for the container

signature SignatureRFC6979 Signature of stable-marshalled Extended ACL
table according to RFC-6979.

Response Body SetExtendedACLResponse.Body

SetExtendedACLResponse has an empty body because the operation is asynchronous and the
update should be reflected in Container smart contract’s storage after next block is issued in
sidechain.

Method GetExtendedACL

Returns Extended ACL table and signature from Container smart contract storage.

Statuses: -OK (0, SECTION_SUCCESS):
container eACL has been successfully read; - Common failures (SECTION_FAILURE_COMMON); - CON-
TAINER_NOT_FOUND (3072, SECTION_CONTAINER):
container not found; - EACL_NOT_FOUND (3073, SECTION_CONTAINER):
eACL table not found.

Neo Saint Petersburg Competence Center 115

NeoFS Technical Specification Revision: c57acefc

Request Body: GetExtendedACLRequest.Body

Get Extended ACL request body

Field Type Description

container_id ContainerID Identifier of the container having Extended ACL

Response Body GetExtendedACLResponse.Body

Get Extended ACL Response body can be empty if the requested container does not have Extended
ACL Table attached or Extended ACL has not been allowed at the time of container creation.

Field Type Description

eacl EACLTable Extended ACL requested, if available

signature SignatureRFC6979 Signature of stable-marshalled Extended ACL
according to RFC-6979.

session_token SessionToken Session token if Extended ACL was set within a
session

Method AnnounceUsedSpace

Announces the space values used by the container for P2P synchronization.

Statuses: -OK (0, SECTION_SUCCESS):
estimationofusedspacehasbeensuccessfullyannounced; -Commonfailures (SECTION_FAILURE_COMMON).

Request Body: AnnounceUsedSpaceRequest.Body

Container used space announcement body.

Field Type Description

announcements Announcement List of announcements. If nodes share several
containers, announcements are transferred in a
batch.

Response Body AnnounceUsedSpaceResponse.Body

Neo Saint Petersburg Competence Center 116

NeoFS Technical Specification Revision: c57acefc

AnnounceUsedSpaceResponse has an empty body because announcements are one way com-
munication.

Message AnnounceUsedSpaceRequest.Body.Announcement

Announcement contains used space information for a single container.

Field Type Description

epoch uint64 Epoch number for which the container size
estimation was produced.

container_id ContainerID Identifier of the container.

used_space uint64 Used space is a sum of object payload sizes of a
specified container, stored in the node. It must
not include inhumed objects.

Message Container

Container is a structure that defines object placement behaviour. Objects can be stored only within
containers. They define placement rule, attributes and access control information. An ID of a con-
tainer is a 32 byte long SHA256 hash of stable-marshalled container message.

Field Type Description

version Version Container format version. Effectively, the version
of API library used to create the container.

owner_id OwnerID Identifier of the container owner

nonce bytes Nonce is a 16 byte UUIDv4, used to avoid collisions
of ContainerIDs

basic_acl uint32 BasicACL contains access control rules for the
owner, system and others groups, as well as
permission bits for BearerToken and
Extended ACL

attributes Attribute Attributes represent immutable container’s meta
data

Neo Saint Petersburg Competence Center 117

NeoFS Technical Specification Revision: c57acefc

Field Type Description

placement_policy PlacementPolicy Placement policy for the object inside the
container

Message Container.Attribute

Attribute is a user-defined Key-Value metadata pair attached to the container. Container at-
tributes are immutable. They are set at the moment of container creation and can never be added or
updated.

Key name must be a container-unique valid UTF-8 string. Value can’t be empty. Containers with du-
plicated attribute names or attributes with empty values will be considered invalid.

There are some “well-known” attributes affecting system behaviour:

• __NEOFS__SUBNET
String ID of a container’s storage subnet. Any container can be attached to one subnet only.

• __NEOFS__NAME
String of a human-friendly container name registered as a domain in NNS contract.

• __NEOFS__ZONE
String of a zone for __NEOFS__NAME. Used as a TLD of a domain name in NNS contract. If no
zone is specified, use default zone: container.

• __NEOFS__DISABLE_HOMOMORPHIC_HASHING
Disables homomorphic hashing for the container if the value equals “true” string. Any other
values are interpreted as missing attribute. Container could be accepted in a NeoFS network
only if the global network hashing configuration value corresponds with that attribute’s value.
After container inclusion, network setting is ignored.

And some well-known attributes used by applications only:

• Name
Human-friendly name

• Timestamp
User-defined local time of container creation in Unix Timestamp format

Field Type Description

key string Attribute name key

value string Attribute value

Neo Saint Petersburg Competence Center 118

NeoFS Technical Specification Revision: c57acefc

neo.fs.v2.lock

Message Lock

Lockobjects protects a list of objects frombeingdeleted. The lifetimeof a lock object is limited similar
to regular objects in__NEOFS__EXPIRATION_EPOCH attribute. Lock objectMUST have expiration
epoch. It is impossible to delete a lock object via ObjectService.Delete RPC call.

Field Type Description

members ObjectID List of objects to lock. Must not be empty or carry
empty IDs. All members must be of the REGULAR
type.

neo.fs.v2.netmap

Service “NetmapService”

NetmapService provides methods to work with Network Map and the information required to
build it. The resulting Network Map is stored in sidechain Netmap smart contract, while related
information can be obtained from other NeoFS nodes.

Method LocalNodeInfo

Get NodeInfo structure from the particular node directly. Node information can be taken from
Netmap smart contract. In some cases, though, one may want to get recent information directly or
to talk to the node not yet present in the Network Map to find out what API version can be used for
further communication. This can be also used to check if a node is up and running.

Statuses: - OK (0, SECTION_SUCCESS): information about the server has been successfully read; -
Common failures (SECTION_FAILURE_COMMON).

Request Body: LocalNodeInfoRequest.Body

LocalNodeInfo request body is empty.

Response Body LocalNodeInfoResponse.Body

Local Node Info, including API Version in use.

Neo Saint Petersburg Competence Center 119

NeoFS Technical Specification Revision: c57acefc

Field Type Description

version Version Latest NeoFS API version in use

node_info NodeInfo NodeInfo structure with recent information from
node itself

Method NetworkInfo

Read recent information about the NeoFS network.

Statuses: -OK (0, SECTION_SUCCESS): information about the current network state has been success-
fully read; - Common failures (SECTION_FAILURE_COMMON).

Request Body: NetworkInfoRequest.Body

NetworkInfo request body is empty.

Response Body NetworkInfoResponse.Body

Information about the network.

Field Type Description

network_info NetworkInfo NetworkInfo structure with recent information.

Method NetmapSnapshot

Returns network map snapshot of the current NeoFS epoch.

Statuses: -OK (0, SECTION_SUCCESS): information about the current networkmap has been success-
fully read; - Common failures (SECTION_FAILURE_COMMON).

Request Body: NetmapSnapshotRequest.Body

Get netmap snapshot request body.

Response Body NetmapSnapshotResponse.Body

Get netmap snapshot response body

Neo Saint Petersburg Competence Center 120

NeoFS Technical Specification Revision: c57acefc

Field Type Description

netmap Netmap Structure of the requested network map.

Message Filter

This filter will return the subset of nodes fromNetworkMap or another filter’s results that will satisfy
filter’s conditions.

Field Type Description

name string Name of the filter or a reference to a named filter.
’*’ means application to the whole unfiltered
NetworkMap. At top level it’s used as a filter name.
At lower levels it’s considered to be a reference to
another named filter

key string Key to filter

op Operation Filtering operation

value string Value to match

filters Filter List of inner filters. Top level operation will be
applied to the whole list.

Message Netmap

Network map structure

Field Type Description

epoch uint64 Network map revision number.

nodes NodeInfo Nodes presented in network.

Message NetworkConfig

NeoFS network configuration

Neo Saint Petersburg Competence Center 121

NeoFS Technical Specification Revision: c57acefc

Field Type Description

parameters Parameter List of parameter values

Message NetworkConfig.Parameter

Single configuration parameter

Field Type Description

key bytes Parameter key. UTF-8 encoded string

value bytes Parameter value

Message NetworkInfo

Information about NeoFS network

Field Type Description

current_epoch uint64 Number of the current epoch in the NeoFS
network

magic_number uint64 Magic number of the sidechain of the NeoFS
network

ms_per_block int64 MillisecondsPerBlock network parameter of the
sidechain of the NeoFS network

network_config NetworkConfig NeoFS network configuration

Message NodeInfo

NeoFS node description

Field Type Description

public_key bytes Public key of the NeoFS node in a binary format

addresses string Ways to connect to a node

Neo Saint Petersburg Competence Center 122

NeoFS Technical Specification Revision: c57acefc

Field Type Description

attributes Attribute Carries list of the NeoFS node attributes in a
key-value form. Key namemust be a node-unique
valid UTF-8 string. Value can’t be empty. NodeInfo
structures with duplicated attribute names or
attributes with empty values will be considered
invalid.

state State Carries state of the NeoFS node

Message NodeInfo.Attribute

Administrator-defined Attributes of the NeoFS Storage Node.

Attribute is a Key-Value metadata pair. Key name must be a valid UTF-8 string. Value can’t be
empty.

Attributes can be constructed into a chain of attributes: any attribute can have a parent attribute and
a child attribute (except the first and the last one). A string representation of the chain of attributes in
NeoFS Storage Node configuration uses “:” and “/” symbols, e.g.:

`NEOFS_NODE_ATTRIBUTE_1=key1:val1/key2:val2`

Therefore the string attribute representation in the Node configuration must use “:”, “/” and “\” es-
caped symbols if any of them appears in an attribute’s key or value.

Node’s attributes are mostly used during Storage Policy evaluation to calculate object’s placement
and find a set of nodes satisfying policy requirements. There are some “well-known” node attributes
common toall theStorageNodes in thenetworkandused implicitlywithdefault values if not explicitly
set:

• Capacity
Total available disk space in Gigabytes.

• Price
Price in GAS tokens for storing one GB of data during one Epoch. In node attributes it’s a string
presenting floating point number with comma or point delimiter for decimal part. In the Net-
work Map it will be saved as 64-bit unsigned integer representing number of minimal token
fractions.

Neo Saint Petersburg Competence Center 123

NeoFS Technical Specification Revision: c57acefc

• __NEOFS_SUBNET%s
True or False. Defines if the node is included in the %s subnetwork or not. %smust be an
existing subnetwork’s ID (non-negative integer number). A node can be included in more than
one subnetworkand, therefore, cancontainmore thanone subnet attribute. Amissingattribute
is equivalent to the presence of the attributewithFalse value (except default zero subnetwork
(with %s == 0) for which missing attribute means inclusion in that network).

• UN-LOCODE
Node’s geographic location in UN/LOCODE30 format approximated to the nearest point defined
in the standard.

• CountryCode
Country code in ISO 3166-1_alpha-231 format. Calculated automatically from UN-LOCODE at-
tribute.

• Country
Country short name in English, as defined in ISO-316632. Calculated automatically from UN-
LOCODE attribute.

• Location
Place names are given, whenever possible, in their national language versions as expressed
in the Roman alphabet using the 26 characters of the character set adopted for international
trade data interchange, writtenwithout diacritics . Calculated automatically fromUN-LOCODE
attribute.

• SubDivCode
Country’s administrative subdivisionwherenode is located. Calculatedautomatically fromUN-
LOCODE attribute based on SubDiv field. Presented in ISO 3166-233 format.

• SubDiv
Country’s administrative subdivision name, as defined in ISO 3166-234. Calculated automati-
cally from UN-LOCODE attribute.

• Continent
Node’s continentnameaccording to the [Seven-Continentmodel] (https://en.wikipedia.org/wiki/Continent#Number).
Calculated automatically from UN-LOCODE attribute.

For detailed description of each well-known attribute please see the corresponding section in NeoFS
Technical Specification.

30https://www.unece.org/cefact/codesfortrade/codes_index.html
31https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
32https://www.iso.org/obp/ui/#search
33https://en.wikipedia.org/wiki/ISO_3166-2
34https://en.wikipedia.org/wiki/ISO_3166-2

Neo Saint Petersburg Competence Center 124

https://www.unece.org/cefact/codesfortrade/codes_index.html
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://www.iso.org/obp/ui/#search
https://en.wikipedia.org/wiki/ISO_3166-2
https://en.wikipedia.org/wiki/ISO_3166-2

NeoFS Technical Specification Revision: c57acefc

Field Type Description

key string Key of the node attribute

value string Value of the node attribute

parents string Parent keys, if any. For example for City it could
be Region and Country.

Message PlacementPolicy

Set of rules to select a subset of nodes from NetworkMap able to store container’s objects. The for-
mat is simple enough to transpile from different storage policy definition languages.

Field Type Description

replicas Replica Rules to set number of object replicas and place
each one into a named bucket

container_backup_factor uint32 Container backup factor controls how deep NeoFS
will search for nodes alternatives to include into
container’s nodes subset

selectors Selector Set of Selectors to form the container’s nodes
subset

filters Filter List of named filters to reference in selectors

subnet_id SubnetID Subnetwork ID to select nodes from. Zero subnet
(default) represents all of the nodes which didn’t
explicitly opt out of membership.

Message Replica

Number of object replicas in a set of nodes from thedefined selector. If no selector set, the root bucket
containing all possible nodes will be used by default.

Field Type Description

count uint32 Howmany object replicas to put

Neo Saint Petersburg Competence Center 125

NeoFS Technical Specification Revision: c57acefc

Field Type Description

selector string Named selector bucket to put replicas

Message Selector

Selector chooses a number of nodes from the bucket taking the nearest nodes to the provided Con-
tainerID by hash distance.

Field Type Description

name string Selector name to reference in object placement section

count uint32 Howmany nodes to select from the bucket

clause Clause Selector modifier showing how to form a bucket

attribute string Bucket attribute to select from

filter string Filter reference to select from

Emun Clause

Selector modifier shows how the node set will be formed. By default selector just groups nodes into
a bucket by attribute, selecting nodes only by their hash distance.

Number Name Description

0 CLAUSE_UNSPECIFIEDNomodifier defined. Nodes will be selected
from the bucket randomly

1 SAME SAME will select only nodes having the same
value of bucket attribute

2 DISTINCT DISTINCT will select nodes having different
values of bucket attribute

Emun NodeInfo.State

Represents the enumeration of various states of the NeoFS node.

Neo Saint Petersburg Competence Center 126

NeoFS Technical Specification Revision: c57acefc

Number Name Description

0 UNSPECIFIED Unknown state

1 ONLINE Active state in the network

2 OFFLINE Network unavailable state

Emun Operation

Operations on filters

Number Name Description

0 OPERATION_UNSPECIFIED No Operation defined

1 EQ Equal

2 NE Not Equal

3 GT Greater then

4 GE Greater or equal

5 LT Less then

6 LE Less or equal

7 OR Logical OR

8 AND Logical AND

neo.fs.v2.object

Service “ObjectService”

ObjectService provides API for manipulating objects. Object operations do not affect the
sidechain and are only served by nodes in p2p style.

Method Get

Receive full object structure, including Headers and payload. Response uses gRPC stream. First re-
sponse message carries the object with the requested address. Chunk messages are parts of the ob-

Neo Saint Petersburg Competence Center 127

NeoFS Technical Specification Revision: c57acefc

ject’s payload if it is needed. All messages, except the first one, carry payload chunks. The requested
object can be restored by concatenation of objectmessage payload and all chunks keeping the receiv-
ing order.

Extended headers can change Get behaviour: * __NEOFS__NETMAP_EPOCH
Will use the requstedversionofNetworkMap forobjectplacementcalculation. *__NEOFS__NETMAP_LOOKUP_DEPTH
Will try older versions (starting from __NEOFS__NETMAP_EPOCH if specified or the latest one oth-
erwise) of Network Map to find an object until the depth limit is reached.

Please refer to detailed XHeader description.

Statuses: -OK (0, SECTION_SUCCESS):
object has been successfully read; - Common failures (SECTION_FAILURE_COMMON); - CON-
TAINER_NOT_FOUND (3072, SECTION_CONTAINER):
object container not found; - ACCESS_DENIED (2048, SECTION_OBJECT):
read access to the object is denied; -OBJECT_NOT_FOUND (2049, SECTION_OBJECT):
object not found in container; - TOKEN_EXPIRED (4097, SECTION_SESSION):
provided session token has expired; -OBJECT_ALREADY_REMOVED (2052, SECTION_OBJECT):
the requested object has beenmarked as deleted.

Request Body: GetRequest.Body

GET Object request body

Field Type Description

address Address Address of the requested object

raw bool If raw flag is set, request will work only with
objects that are physically stored on the peer
node

Response Body GetResponse.Body

GET Object Response body

Field Type Description

init Init Initial part of the object stream

chunk bytes Chunked object payload

split_info SplitInfo Meta information of split hierarchy for object
assembly.

Neo Saint Petersburg Competence Center 128

NeoFS Technical Specification Revision: c57acefc

Method Put

Put the object into container. Request uses gRPC stream. First message SHOULD be of PutHeader
type. ContainerID andOwnerIDof an object SHOULDbe set. Session token SHOULDbeobtained
beforePUT operation (see session package). Chunkmessages are considered by server as a part of an
object payload. Allmessages, except first one, SHOULDbepayload chunks. Chunkmessages SHOULD
be sent in the direct order of fragmentation.

Extended headers can change Put behaviour: * __NEOFS__NETMAP_EPOCH
Will use the requsted version of Network Map for object placement calculation.

Please refer to detailed XHeader description.

Statuses: -OK (0, SECTION_SUCCESS):
objecthasbeensuccessfully saved in thecontainer; - Commonfailures (SECTION_FAILURE_COMMON);
- LOCKED (2050, SECTION_OBJECT):
placement of an object of type TOMBSTONE that includes at least one locked object is prohibited; -
LOCK_NON_REGULAR_OBJECT (2051, SECTION_OBJECT):
placement of an object of type LOCK that includes at least one object of type other than REGULAR is
prohibited; - CONTAINER_NOT_FOUND (3072, SECTION_CONTAINER):
object storage container not found; - ACCESS_DENIED (2048, SECTION_OBJECT):
write access to the container is denied; - TOKEN_NOT_FOUND (4096, SECTION_SESSION):
(for trusted object preparation) session private key does not exist or has been deleted; - TO-
KEN_EXPIRED (4097, SECTION_SESSION):
provided session token has expired.

Request Body: PutRequest.Body

PUT request body

Field Type Description

init Init Initial part of the object stream

chunk bytes Chunked object payload

Response Body PutResponse.Body

PUT Object response body

Neo Saint Petersburg Competence Center 129

NeoFS Technical Specification Revision: c57acefc

Field Type Description

object_id ObjectID Identifier of the saved object

Method Delete

Delete the object from a container. There is no immediate removal guarantee. Object will be marked
for removal and deleted eventually.

Extended headers can change Delete behaviour: * __NEOFS__NETMAP_EPOCH
Will use the requsted version of Network Map for object placement calculation.

Please refer to detailed XHeader description.

Statuses: -OK (0, SECTION_SUCCESS):
object has been successfully marked to be removed from the container; - Common failures (SEC-
TION_FAILURE_COMMON); - LOCKED (2050, SECTION_OBJECT):
deleting a locked object is prohibited; - CONTAINER_NOT_FOUND (3072, SECTION_CONTAINER):
object container not found; - ACCESS_DENIED (2048, SECTION_OBJECT):
delete access to the object is denied; - TOKEN_EXPIRED (4097, SECTION_SESSION):
provided session token has expired.

Request Body: DeleteRequest.Body

Object DELETE request body

Field Type Description

address Address Address of the object to be deleted

Response Body DeleteResponse.Body

Object DELETE Response has an empty body.

Field Type Description

tombstone Address Address of the tombstone created for the deleted object

Neo Saint Petersburg Competence Center 130

NeoFS Technical Specification Revision: c57acefc

Method Head

Returns the object Headers without data payload. By default full header is returned. If main_only
request field is set, the short headerwithonly the veryminimal informationwill be returned instead.

Extended headers can change Head behaviour: * __NEOFS__NETMAP_EPOCH
Will use the requsted version of Network Map for object placement calculation.

Please refer to detailed XHeader description.

Statuses: -OK (0, SECTION_SUCCESS):
object header has been successfully read; - Common failures (SECTION_FAILURE_COMMON); - CON-
TAINER_NOT_FOUND (3072, SECTION_CONTAINER):
object container not found; - ACCESS_DENIED (2048, SECTION_OBJECT):
access to operation HEAD of the object is denied; -OBJECT_NOT_FOUND (2049, SECTION_OBJECT):
object not found in container; - TOKEN_EXPIRED (4097, SECTION_SESSION):
provided session token has expired; -OBJECT_ALREADY_REMOVED (2052, SECTION_OBJECT):
the requested object has beenmarked as deleted.

Request Body: HeadRequest.Body

Object HEAD request body

Field Type Description

address Address Address of the object with the requested Header

main_only bool Return only minimal header subset

raw bool If raw flag is set, request will work only with
objects that are physically stored on the peer
node

Response Body HeadResponse.Body

Object HEAD response body

Field Type Description

header HeaderWithSignature Full object’s Headerwith ObjectID signature

short_header ShortHeader Short object header

split_info SplitInfo Meta information of split hierarchy.

Neo Saint Petersburg Competence Center 131

NeoFS Technical Specification Revision: c57acefc

Method Search

Search objects in container. Search query allows tomatch by Object Header’s filed values. Please see
the corresponding NeoFS Technical Specification section for more details.

Extended headers can change Search behaviour: * __NEOFS__NETMAP_EPOCH
Will use the requsted version of Network Map for object placement calculation.

Please refer to detailed XHeader description.

Statuses: -OK (0, SECTION_SUCCESS):
objects have been successfully selected; - Common failures (SECTION_FAILURE_COMMON); - CON-
TAINER_NOT_FOUND (3072, SECTION_CONTAINER):
search container not found; - ACCESS_DENIED (2048, SECTION_OBJECT):
access to operation SEARCH of the object is denied; - TOKEN_EXPIRED (4097, SECTION_SESSION):
provided session token has expired.

Request Body: SearchRequest.Body

Object Search request body

Field Type Description

container_id ContainerID Container identifier were to search

version uint32 Version of the Query Language used

filters Filter List of search expressions

Response Body SearchResponse.Body

Object Search response body

Field Type Description

id_list ObjectID List of ObjectIDs that match the search query

Method GetRange

Get byte range of data payload. Range is set as an (offset, length) tuple. Like in Get method, the
responseusesgRPCstream. Requested rangecanbe restoredbyconcatenationofall receivedpayload
chunks keeping the receiving order.

Neo Saint Petersburg Competence Center 132

NeoFS Technical Specification Revision: c57acefc

Extended headers can change GetRange behaviour: * __NEOFS__NETMAP_EPOCH
Will use the requstedversionofNetworkMap forobjectplacementcalculation. *__NEOFS__NETMAP_LOOKUP_DEPTH
Will try older versions of Network Map to find an object until the depth limit is reached.

Please refer to detailed XHeader description.

Statuses: -OK (0, SECTION_SUCCESS):
data rangeof theobjectpayloadhasbeensuccessfully read; -Common failures (SECTION_FAILURE_COMMON);
- CONTAINER_NOT_FOUND (3072, SECTION_CONTAINER):
object container not found; - ACCESS_DENIED (2048, SECTION_OBJECT):
access to operationRANGEof theobject is denied; -OBJECT_NOT_FOUND (2049, SECTION_OBJECT):
object not found in container; - TOKEN_EXPIRED (4097, SECTION_SESSION):
provided session token has expired; -OBJECT_ALREADY_REMOVED (2052, SECTION_OBJECT):
the requested object has beenmarked as deleted. -OUT_OF_RANGE (2053, SECTION_OBJECT):
the requested range is out of bounds.

Request Body: GetRangeRequest.Body

Byte range of object’s payload request body

Field Type Description

address Address Address of the object containing the requested
payload range

range Range Requested payload range

raw bool If raw flag is set, request will work only with
objects that are physically stored on the peer
node.

Response Body GetRangeResponse.Body

Get Range response body uses streams to transfer the response. Because object payload considered
a byte sequence, there is no need to have some initial preamble message. The requested byte range
is sent as a series chunks.

Field Type Description

chunk bytes Chunked object payload’s range.

split_info SplitInfo Meta information of split hierarchy.

Neo Saint Petersburg Competence Center 133

NeoFS Technical Specification Revision: c57acefc

Method GetRangeHash

Returns homomorphic or regular hash of object’s payload range after applying XOR operation with
the provided salt. Ranges are set of (offset, length) tuples. Hashes order in response corresponds
to the ranges order in the request. Note that hash is calculated for XORed data.

Extended headers can change GetRangeHash behaviour: * __NEOFS__NETMAP_EPOCH
Will use the requstedversionofNetworkMap forobjectplacementcalculation. *__NEOFS__NETMAP_LOOKUP_DEPTH
Will try older versions of Network Map to find an object until the depth limit is reached.

Please refer to detailed XHeader description.

Statuses: -OK (0, SECTION_SUCCESS):
data range of the object payload has been successfully hashed; - Common failures (SEC-
TION_FAILURE_COMMON); - CONTAINER_NOT_FOUND (3072, SECTION_CONTAINER):
object container not found; - ACCESS_DENIED (2048, SECTION_OBJECT):
access to operation RANGEHASH of the object is denied; - OBJECT_NOT_FOUND (2049, SEC-
TION_OBJECT):
object not found in container; -OUT_OF_RANGE (2053, SECTION_OBJECT):
the requested range is out of bounds. - TOKEN_EXPIRED (4097, SECTION_SESSION):
provided session token has expired.

Request Body: GetRangeHashRequest.Body

Get hash of object’s payload part request body.

Field Type Description

address Address Address of the object that containing the
requested payload range

ranges Range List of object’s payload ranges to calculate
homomorphic hash

salt bytes Binary salt to XOR object’s payload ranges before
hash calculation

type ChecksumType Checksum algorithm type

Response Body GetRangeHashResponse.Body

Get hash of object’s payload part response body.

Neo Saint Petersburg Competence Center 134

NeoFS Technical Specification Revision: c57acefc

Field Type Description

type ChecksumType Checksum algorithm type

hash_list bytes List of range hashes in a binary format

Message GetResponse.Body.Init

Initial part of the Object structure stream. Technically it’s a set of all Object structure’s fields ex-
cept payload.

Field Type Description

object_id ObjectID Object’s unique identifier.

signature Signature Signed ObjectID

header Header Object metadata headers

Message HeaderWithSignature

Tuple of a full object header and signature of an ObjectID.
Signed ObjectID is present to verify full header’s authenticity through the following steps:

1. Calculate SHA-256 of the marshalled Header structure
2. Check if the resulting hash matches ObjectID
3. Check if ObjectID signature in signature field is correct

Field Type Description

header Header Full object header

signature Signature Signed ObjectID to verify full header’s authenticity

Message PutRequest.Body.Init

Newly created object structure parameters. If some optional parameters are not set, they will be cal-
culated by a peer node.

Neo Saint Petersburg Competence Center 135

NeoFS Technical Specification Revision: c57acefc

Field Type Description

object_id ObjectID ObjectID if available.

signature Signature Object signature if available

header Header Object’s Header

copies_number uint32 Number of the object copies to store within the
RPC call. By default object is processed according
to the container’s placement policy.

Message Range

Object payload range.Ranges of zero length SHOULD be considered as invalid.

Field Type Description

offset uint64 Offset of the range from the object payload start

length uint64 Length in bytes of the object payload range

Message SearchRequest.Body.Filter

Filter structure checks if the object header field or the attribute content matches a value.

If no filters are set, search request will return all objects of the container, including Regular object,
Tombstones and Storage Group objects. Most human users expect to get only object they can directly
work with. In that case, $Object:ROOT filter should be used.

By default key field refers to the corresponding object’s Attribute. Some Object’s header fields
can also be accessed by adding $Object: prefix to the name. Here is the list of fields available via
this prefix:

• $Object:version
version

• $Object:objectID
object_id

• $Object:containerID
container_id

Neo Saint Petersburg Competence Center 136

NeoFS Technical Specification Revision: c57acefc

• $Object:ownerID
owner_id

• $Object:creationEpoch
creation_epoch

• $Object:payloadLength
payload_length

• $Object:payloadHash
payload_hash

• $Object:objectType
object_type

• $Object:homomorphicHash
homomorphic_hash

• $Object:split.parent
object_id of parent

• $Object:split.splitID
16 byte UUIDv4 used to identify the split object hierarchy parts

There are some well-known filter aliases to match objects by certain properties:

• $Object:ROOT
Returns only REGULAR type objects that are not split or that are the top level root objects in a
split hierarchy. This includes objects not present physically, like large objects split into smaller
objects without a separate top-level root object. Objects of other types like StorageGroups and
Tombstones will not be shown. This filter may be useful for listing objects like ls command
of some virtual file system. This filter is activated if the key exists, disregarding the value and
matcher type.

• $Object:PHY
Returns only objects physically stored in the system. This filter is activated if the key exists,
disregarding the value andmatcher type.

Note: using filters with a key with prefix $Object: and match type NOT_PRESENTis not recom-
mended since this is not a cross-version approach. Behavior when processing this kind of filters is
undefined.

Field Type Description

match_type MatchType Match type to use

key string Attribute or Header fields to match

value string Value to match

Neo Saint Petersburg Competence Center 137

NeoFS Technical Specification Revision: c57acefc

Message Header

Object Header

Field Type Description

version Version Object format version. Effectively, the version of
API library used to create particular object

container_id ContainerID Object’s container

owner_id OwnerID Object’s owner

creation_epoch uint64 Object creation Epoch

payload_length uint64 Size of payload in bytes.
0xFFFFFFFFFFFFFFFFmeans
payload_length is unknown.

payload_hash Checksum Hash of payload bytes

object_type ObjectType Type of the object payload content

homomorphic_hash Checksum Homomorphic hash of the object payload

session_token SessionToken Session token, if it was used during Object
creation. Need it to verify integrity and
authenticity out of Request scope.

attributes Attribute User-defined object attributes

split Split Position of the object in the split hierarchy

Message Header.Attribute

Attribute is a user-defined Key-Value metadata pair attached to an object.

Key namemust be an object-unique valid UTF-8 string. Value can’t be empty. Objectswith duplicated
attribute names or attributes with empty values will be considered invalid.

There are some “well-known” attributes starting with __NEOFS__ prefix that affect system
behaviour:

• __NEOFS__UPLOAD_ID
Marks smaller parts of a split bigger object

• __NEOFS__EXPIRATION_EPOCH
Tells GC to delete object after that epoch

Neo Saint Petersburg Competence Center 138

NeoFS Technical Specification Revision: c57acefc

• __NEOFS__TICK_EPOCH
Decimal number that defines what epoch must produce object notification with UTF-8 object
address in a body (0 value produces notification right after object put)

• __NEOFS__TICK_TOPIC
UTF-8 string topic ID that is used for object notification

And some well-known attributes used by applications only:

• Name
Human-friendly name

• FileName
File name to be associated with the object on saving

• FilePath
Full path to be associated with the object on saving. Should start with a ‘/’ and use ‘/’ as a de-
limiting symbol. Trailing ‘/’ should be interpreted as a virtual directory marker. If an object has
conflicting FilePath and FileName, FilePath should have higher priority, because it is used to
construct the directory tree. FilePath with trailing ‘/’ and non-empty FileName attribute should
not be used together.

• Timestamp
User-defined local time of object creation in Unix Timestamp format

• Content-Type
MIME Content Type of object’s payload

For detailed description of each well-known attribute please see the corresponding section in NeoFS
Technical Specification.

Field Type Description

key string string key to the object attribute

value string string value of the object attribute

Message Header.Split

Bigger objects can be split into a chain of smaller objects. Information about inter-dependencies be-
tween spawned objects and how to re-construct the original one is in theSplit headers. Parent and
children objects must be within the same container.

Neo Saint Petersburg Competence Center 139

NeoFS Technical Specification Revision: c57acefc

Field Type Description

parent ObjectID Identifier of the origin object. Known only to the
minor child.

previous ObjectID Identifier of the left split neighbor

parent_signature Signature signature field of the parent object. Used to
reconstruct parent.

parent_header Header header field of the parent object. Used to
reconstruct parent.

children ObjectID List of identifiers of the objects generated by
splitting current one.

split_id bytes 16 byte UUIDv4 used to identify the split object
hierarchy parts. Must be unique inside container.
All objects participating in the split must have the
same split_id value.

Message Object

Object structure. Object is immutable and content-addressed. It meansObjectIDwill change if the
header or the payload changes. It’s calculated as a hash of header field which contains hash of the
object’s payload.

For non-regular object types payload format depends on object type specified in the header.

Field Type Description

object_id ObjectID Object’s unique identifier.

signature Signature Signed object_id

header Header Object metadata headers

payload bytes Payload bytes

Message ShortHeader

Short header fields

Neo Saint Petersburg Competence Center 140

NeoFS Technical Specification Revision: c57acefc

Field Type Description

version Version Object format version. Effectively, the version of
API library used to create particular object.

creation_epoch uint64 Epoch when the object was created

owner_id OwnerID Object’s owner

object_type ObjectType Type of the object payload content

payload_length uint64 Size of payload in bytes.
0xFFFFFFFFFFFFFFFFmeans
payload_length is unknown

payload_hash Checksum Hash of payload bytes

homomorphic_hash Checksum Homomorphic hash of the object payload

Message SplitInfo

Meta information of split hierarchy for object assembly. With the last part one can traverse linked list
of split hierarchy back to the first part and assemble the original object. With a linking object one can
assemble an object right from the object parts.

Field Type Description

split_id bytes 16 byte UUID used to identify the split object
hierarchy parts.

last_part ObjectID The identifier of the last object in split hierarchy
parts. It contains split header with the original
object header.

link ObjectID The identifier of a linking object for split hierarchy
parts. It contains split header with the original
object header and a sorted list of object parts.

EmunMatchType

Type of match expression

Neo Saint Petersburg Competence Center 141

NeoFS Technical Specification Revision: c57acefc

Number Name Description

0 MATCH_TYPE_UNSPECIFIED Unknown. Not used

1 STRING_EQUAL Full string match

2 STRING_NOT_EQUAL Full string mismatch

3 NOT_PRESENT Lack of key

4 COMMON_PREFIX String prefix match

Emun ObjectType

Type of the object payload content. Only REGULAR type objects can be split, hence TOMBSTONE,
STORAGE_GROUP and LOCK payload is limited by the maximum object size.

String presentation of object type is the same as definition: * REGULAR * TOMBSTONE * STOR-
AGE_GROUP * LOCK

Number Name Description

0 REGULAR Just a normal object

1 TOMBSTONE Used internally to identify deleted objects

2 STORAGE_GROUP StorageGroup information

3 LOCK Object lock

neo.fs.v2.refs

Message Address

Objects in NeoFS are addressed by their ContainerID and ObjectID.

StringpresentationofAddress is a concatenationof stringencodedContainerIDandObjectID
delimited by ‘/’ character.

Field Type Description

container_id ContainerID Container identifier

Neo Saint Petersburg Competence Center 142

NeoFS Technical Specification Revision: c57acefc

Field Type Description

object_id ObjectID Object identifier

Message Checksum

Checksummessage. Depending on checksum algorithm type, the string presentation may vary:

• TZ
Hex encoded string without 0x prefix

• SHA256
Hex encoded string without 0x prefix

Field Type Description

type ChecksumType Checksum algorithm type

sum bytes Checksum itself

Message ContainerID

NeoFS container identifier. Container structures are immutable and content-addressed.

ContainerID is a 32 byte long SHA25635 hash of stable-marshalled container message.

String presentation is a base5836 encoded string.

JSON value will be data encoded as a string using standard base64 encoding with paddings. Either
standard37 or URL-safe38 base64 encoding with/without paddings are accepted.

Field Type Description

value bytes Container identifier in a binary format.

35https://csrc.nist.gov/publications/detail/fips/180/4/final
36https://tools.ietf.org/html/draft-msporny-base58-02
37https://tools.ietf.org/html/rfc4648#section-4
38https://tools.ietf.org/html/rfc4648#section-5

Neo Saint Petersburg Competence Center 143

https://csrc.nist.gov/publications/detail/fips/180/4/final
https://tools.ietf.org/html/draft-msporny-base58-02
https://tools.ietf.org/html/rfc4648#section-4
https://tools.ietf.org/html/rfc4648#section-5

NeoFS Technical Specification Revision: c57acefc

Message ObjectID

NeoFS Object unique identifier. Objects are immutable and content-addressed. It means ObjectID
will change if the header or the payload changes.

ObjectID is a 32 byte long SHA25639 hash of the object’s header field, which, in it’s turn, contains
the hash of the object’s payload.

String presentation is a base5840 encoded string.

JSON value will be data encoded as a string using standard base64 encoding with paddings. Either
standard41 or URL-safe42 base64 encoding with/without paddings are accepted.

Field Type Description

value bytes Object identifier in a binary format

Message OwnerID

OwnerID is a derivative of a user’s main public key. The transformation algorithm is the same as for
Neo3 wallet addresses. Neo3 wallet address can be directly used as OwnerID.

OwnerID is a 25 bytes sequence starting with Neo version prefix byte followed by 20 bytes of
ScrptHash and 4 bytes of checksum.

String presentation is a Base58 Check43 Encoded string.

JSON value will be data encoded as a string using standard base64 encoding with paddings. Either
standard44 or URL-safe45 base64 encoding with/without paddings are accepted.

Field Type Description

value bytes Identifier of the container owner in a binary format

39https://csrc.nist.gov/publications/detail/fips/180/4/final
40https://tools.ietf.org/html/draft-msporny-base58-02
41https://tools.ietf.org/html/rfc4648#section-4
42https://tools.ietf.org/html/rfc4648#section-5
43https://en.bitcoin.it/wiki/Base58Check_encoding
44https://tools.ietf.org/html/rfc4648#section-4
45https://tools.ietf.org/html/rfc4648#section-5

Neo Saint Petersburg Competence Center 144

https://csrc.nist.gov/publications/detail/fips/180/4/final
https://tools.ietf.org/html/draft-msporny-base58-02
https://tools.ietf.org/html/rfc4648#section-4
https://tools.ietf.org/html/rfc4648#section-5
https://en.bitcoin.it/wiki/Base58Check_encoding
https://tools.ietf.org/html/rfc4648#section-4
https://tools.ietf.org/html/rfc4648#section-5

NeoFS Technical Specification Revision: c57acefc

Message Signature

Signature of something in NeoFS.

Field Type Description

key bytes Public key used for signing

sign bytes Signature

scheme SignatureScheme Scheme contains digital signature scheme identifier

Message SignatureRFC6979

RFC 6979 signature.

Field Type Description

key bytes Public key used for signing

sign bytes Deterministic ECDSA with SHA-256 hashing

Message SubnetID

NeoFS subnetwork identifier.

String representation of a value is base-10 integer.

JSON representation is an object containing a single value number field.

Field Type Description

value fixed32 4-byte integer subnetwork identifier.

Message Version

API version used by a node.

String presentation is a Semantic Versioning 2.0.0 compatible version string with ‘v’ prefix. i.e. vX.Y,
where X is the major number, Y is the minor number.

Neo Saint Petersburg Competence Center 145

NeoFS Technical Specification Revision: c57acefc

Field Type Description

major uint32 Major API version

minor uint32 Minor API version

Emun ChecksumType

Checksum algorithm type.

Number Name Description

0 CHECKSUM_TYPE_UNSPECIFIED Unknown. Not used

1 TZ Tillich-Zemor homomorphic hash function

2 SHA256 SHA-256

Emun SignatureScheme

Signature scheme describes digital signing scheme used for (key, signature) pair.

Number Name Description

0 ECDSA_SHA512 ECDSA with SHA-512 hashing (FIPS 186-3)

1 ECDSA_RFC6979_SHA256Deterministic ECDSA with SHA-256 hashing (RFC
6979)

2 ECDSA_RFC6979_SHA256_WALLET_CONNECTDeterministic ECDSA with SHA-256 hashing
using WalletConnect API. Here the algorithm is
the same, but the message format differs.

neo.fs.v2.reputation

Service “ReputationService”

ReputationService provides mechanisms for exchanging trust values with other NeoFS nodes.
Nodes rate each other’s reputation based on how good they process requests and set a trust level

Neo Saint Petersburg Competence Center 146

NeoFS Technical Specification Revision: c57acefc

based on that rating. The trust information is passed to the next nodes to check and aggregate unless
the final result is recorded.

Method AnnounceLocalTrust

Announce local client trust information to any node in NeoFS network.

Statuses: - OK (0, SECTION_SUCCESS): local trust has been successfully announced; - Common fail-
ures (SECTION_FAILURE_COMMON).

Request Body: AnnounceLocalTrustRequest.Body

Announce node’s local trust information.

Field Type Description

epoch uint64 Trust assessment Epoch number

trusts Trust List of normalized local trust values to other
NeoFS nodes. The value is calculated according to
EigenTrust++ algorithm andmust be a floating
point number in [0;1] range.

Response Body AnnounceLocalTrustResponse.Body

Response to the node’s local trust information announcement has an empty body because the trust
exchange operation is asynchronous. If Trust information does not pass sanity checks, it is silently
ignored.

Method AnnounceIntermediateResult

Announce the intermediate result of the iterative algorithm for calculating the global reputationof the
node in NeoFS network.

Statuses: - OK (0, SECTION_SUCCESS): intermediate trust estimation has been successfully an-
nounced; - Common failures (SECTION_FAILURE_COMMON).

Request Body: AnnounceIntermediateResultRequest.Body

Announce intermediate global trust information.

Neo Saint Petersburg Competence Center 147

NeoFS Technical Specification Revision: c57acefc

Field Type Description

epoch uint64 Iteration execution Epoch number

iteration uint32 Iteration sequence number

trust PeerToPeerTrust Current global trust value calculated at the
specified iteration

Response Body AnnounceIntermediateResultResponse.Body

Response to the node’s intermediate global trust information announcement has an empty body be-
cause the trust exchange operation is asynchronous. If Trust information does not pass sanity checks,
it is silently ignored.

Message GlobalTrust

Global trust level to NeoFS node.

Field Type Description

version Version Message format version. Effectively, the version of
API library used to create the message.

body Body Message body

signature Signature Signature of the binary body field by the
manager.

Message GlobalTrust.Body

Message body structure.

Field Type Description

manager PeerID Nodemanager ID

trust Trust Global trust level

Neo Saint Petersburg Competence Center 148

NeoFS Technical Specification Revision: c57acefc

Message PeerID

NeoFS unique peer identifier is a 33 byte long compressed public key of the node, the same as the one
stored in the network map.

String presentation is a base5846 encoded string.

JSON value will be data encoded as a string using standard base64 encoding with paddings. Either
standard47 or URL-safe48 base64 encoding with/without paddings are accepted.

Field Type Description

public_key bytes Peer node’s public key

Message PeerToPeerTrust

Trust level of a peer to a peer.

Field Type Description

trusting_peer PeerID Identifier of the trusting peer

trust Trust Trust level

Message Trust

Trust level to a NeoFS network peer.

Field Type Description

peer PeerID Identifier of the trusted peer

value double Trust level in [0:1] range

46https://tools.ietf.org/html/draft-msporny-base58-02
47https://tools.ietf.org/html/rfc4648#section-4
48https://tools.ietf.org/html/rfc4648#section-5

Neo Saint Petersburg Competence Center 149

https://tools.ietf.org/html/draft-msporny-base58-02
https://tools.ietf.org/html/rfc4648#section-4
https://tools.ietf.org/html/rfc4648#section-5

NeoFS Technical Specification Revision: c57acefc

neo.fs.v2.session

Service “SessionService”

SessionService allows to establish a temporary trust relationship between two peer nodes and
generate a SessionToken as the proof of trust to be attached in requests for further verification.
Please see corresponding section of NeoFS Technical Specification for details.

Method Create

Open a new session between two peers.

Statuses: -OK (0, SECTION_SUCCESS): sessionhasbeen successfully opened; - Common failures (SEC-
TION_FAILURE_COMMON).

Request Body: CreateRequest.Body

Session creation request body

Field Type Description

owner_id OwnerID Session initiating user’s or node’s key derived OwnerID

expiration uint64 Session expiration Epoch

Response Body CreateResponse.Body

Session creation response body

Field Type Description

id bytes Identifier of a newly created session

session_key bytes Public key used for session

Message ContainerSessionContext

Context information for Session Tokens related to ContainerService requests.

Neo Saint Petersburg Competence Center 150

NeoFS Technical Specification Revision: c57acefc

Field Type Description

verb Verb Type of request for which the token is issued

wildcard bool Spreads the action to all owner containers. If set,
container_id field is ignored.

container_id ContainerID Particular container to which the action applies.
Ignored if wildcard flag is set.

Message ObjectSessionContext

Context information for Session Tokens related to ObjectService requests

Field Type Description

verb Verb Type of request for which the token is issued

address Address Related Object address

Message RequestMetaHeader

Meta information attached to the request. When forwarded between peers, requestmeta headers are
folded in matryoshka style.

Field Type Description

version Version Peer’s API version used

epoch uint64 Peer’s local epoch number. Set to 0 if unknown.

ttl uint32 Maximum number of intermediate nodes in the
request route

x_headers XHeader Request X-Headers

session_token SessionToken Session token within which the request is sent

bearer_token BearerToken BearerTokenwith eACL overrides for the
request

origin RequestMetaHeaderRequestMetaHeader of the origin request

Neo Saint Petersburg Competence Center 151

NeoFS Technical Specification Revision: c57acefc

Field Type Description

magic_number uint64 NeoFS network magic. Must match the value for
the network that the server belongs to.

Message RequestVerificationHeader

Verification info for the request signed by all intermediate nodes.

Field Type Description

body_signature Signature Request Body signature. Should be generated
once by the request initiator.

meta_signature Signature Request Meta signature is added and signed by
each intermediate node

origin_signature Signature Signature of previous hops

origin RequestVerificationHeaderChain of previous hops signatures

Message ResponseMetaHeader

Information about the response

Field Type Description

version Version Peer’s API version used

epoch uint64 Peer’s local epoch number

ttl uint32 Maximum number of intermediate nodes in the request route

x_headers XHeader Response X-Headers

origin ResponseMetaHeader ResponseMetaHeader of the origin request

status Status Status return

Neo Saint Petersburg Competence Center 152

NeoFS Technical Specification Revision: c57acefc

Message ResponseVerificationHeader

Verification info for the response signed by all intermediate nodes

Field Type Description

body_signature Signature Response Body signature. Should be generated
once by an answering node.

meta_signature Signature Response Meta signature is added and signed by
each intermediate node

origin_signature Signature Signature of previous hops

origin ResponseVerificationHeaderChain of previous hops signatures

Message SessionToken

NeoFS Session Token.

Field Type Description

body Body Session Token contains the proof of trust between
peers to be attached in requests for further
verification. Please see corresponding section of
NeoFS Technical Specification for details.

signature Signature Signature of SessionToken information

Message SessionToken.Body

Session Token body

Field Type Description

id bytes Token identifier is a valid UUIDv4 in binary form

owner_id OwnerID Identifier of the session initiator

lifetime TokenLifetime Lifetime of the session

session_key bytes Public key used in session

Neo Saint Petersburg Competence Center 153

NeoFS Technical Specification Revision: c57acefc

Field Type Description

object ObjectSessionContext ObjectService session context

container ContainerSessionContext ContainerService session context

Message SessionToken.Body.TokenLifetime

Lifetime parameters of the token. Field names taken from rfc7519.

Field Type Description

exp uint64 Expiration Epoch

nbf uint64 Not valid before Epoch

iat uint64 Issued at Epoch

Message XHeader

Extended headers for Request/Response. They may contain any user-defined headers to be inter-
preted on application level.

Key name must be a unique valid UTF-8 string. Value can’t be empty. Requests or Responses with
duplicated header names or headers with empty values will be considered invalid.

There are some “well-known” headers starting with __NEOFS__ prefix that affect system be-
haviour:

• __NEOFS__NETMAP_EPOCH
Netmap epoch to use for object placement calculation. The value is string encoded uint64
in decimal presentation. If set to ‘0’ or not set, the current epoch only will be used.

• __NEOFS__NETMAP_LOOKUP_DEPTH
If object can’t be found using current epoch’s netmap, this header limits howmany past epochs
the node can look up through. The value is string encoded uint64 in decimal presentation.
If set to ‘0’ or not set, only the current epoch will be used.

Field Type Description

key string Key of the X-Header

Neo Saint Petersburg Competence Center 154

NeoFS Technical Specification Revision: c57acefc

Field Type Description

value string Value of the X-Header

Emun ContainerSessionContext.Verb

Container request verbs

Number Name Description

0 VERB_UNSPECIFIED Unknown verb

1 PUT Refers to container.Put RPC call

2 DELETE Refers to container.Delete RPC call

3 SETEACL Refers to container.SetExtendedACL RPC call

Emun ObjectSessionContext.Verb

Object request verbs

Number Name Description

0 VERB_UNSPECIFIED Unknown verb

1 PUT Refers to object.Put RPC call

2 GET Refers to object.Get RPC call

3 HEAD Refers to object.Head RPC call

4 SEARCH Refers to object.Search RPC call

5 DELETE Refers to object.Delete RPC call

6 RANGE Refers to object.GetRange RPC call

7 RANGEHASH Refers to object.GetRangeHash RPC call

Neo Saint Petersburg Competence Center 155

NeoFS Technical Specification Revision: c57acefc

neo.fs.v2.status

Message Status

Declares the general format of the status returns of the NeoFS RPC protocol. Status is present in all
response messages. Each RPC of NeoFS protocol describes the possible outcomes and details of the
operation.

Each status is assigned a one-to-one numeric code. Any unique result of an operation in NeoFS is
unambiguously associated with the code value.

Numerical set of codes is split into 1024-element sections. An enumeration is defined for each section.
Values can be referred to in the following ways:

• numerical value ranging from 0 to 4,294,967,295 (global code);

• values fromenumeration (local code). The formula for the ratio of the local code (L) of a defined
section (S) to the global one (G): G = 1024 * S + L.

All outcomes are divided into successful and failed, which corresponds to the success or failure of the
operation. The definition of success follows the semantics of RPC and the description of its purpose.
The server must not attach code that is the opposite of the outcome type.

See the set of return codes in the description for calls.

Each status can carry a developer-facing errormessage. It should be a human readable text in English.
The server should not transmit (and the client should not expect) useful information in the message.
Field details should make the return more detailed.

Field Type Description

code uint32 The status code

message string Developer-facing error message

details Detail Data detailing the outcome of the operation. Must
be unique by ID.

Message Status.Detail

Return detail. It contains additional information that can be used to analyze the response. Each code
defines a set of details that can be attached to a status. Client should not handle details that are not
covered by the code.

Neo Saint Petersburg Competence Center 156

NeoFS Technical Specification Revision: c57acefc

Field Type Description

id uint32 Detail ID. The identifier is required to determine
the binary format of the detail and how to decode
it.

value bytes Binary status detail. Must follow the format
associated with ID. The possibility of missing a
value must be explicitly allowed.

Emun CommonFail

Section of failed statuses independent of the operation.

Number Name Description

0 INTERNAL [1024] Internal server error, default failure. Not
detailed. If the server cannot match failed
outcome to the code, it should use this code.

1 WRONG_MAGIC_NUMBER[1025] Wrongmagic of the NeoFS network.
Details: - [0] Magic number of the served NeoFS
network (big-endian 64-bit unsigned integer).

2 SIGNATURE_VERIFICATION_FAIL[1026] Signature verification failure.

Emun Container

Section of statuses for container-related operations.

Number Name Description

0 CONTAINER_NOT_FOUND [3072] Container not found.

1 EACL_NOT_FOUND [3073] eACL table not found.

Emun Object

Section of statuses for object-related operations.

Neo Saint Petersburg Competence Center 157

NeoFS Technical Specification Revision: c57acefc

Number Name Description

0 ACCESS_DENIED [2048] Access denied by ACL. Details: - [0]
Human-readable description (UTF-8 encoded
string).

1 OBJECT_NOT_FOUND[2049] Object not found.

2 LOCKED [2050] Operation rejected by the object lock.

3 LOCK_NON_REGULAR_OBJECT[2051] Locking an object with a non-REGULAR
type rejected.

4 OBJECT_ALREADY_REMOVED[2052] Object has beenmarked deleted.

5 OUT_OF_RANGE [2053] Invalid range has been requested for an
object.

Emun Section

Section identifiers.

Number Name Description

0 SECTION_SUCCESS Successful return codes.

1 SECTION_FAILURE_COMMON Failure codes regardless of the operation.

2 SECTION_OBJECT Object service-specific errors.

3 SECTION_CONTAINER Container service-specific errors.

4 SECTION_SESSION Session service-specific errors.

Emun Session

Section of statuses for session-related operations.

Number Name Description

0 TOKEN_NOT_FOUND [4096] Token not found.

1 TOKEN_EXPIRED [4097] Token has expired.

Neo Saint Petersburg Competence Center 158

NeoFS Technical Specification Revision: c57acefc

Emun Success

Section of NeoFS successful return codes.

Number Name Description

0 OK [0] Default success. Not detailed. If the server
cannotmatch successful outcome to the code, it
should use this code.

neo.fs.v2.storagegroup

Message StorageGroup

StorageGroup keeps verification information for Data Audit sessions. Objects that require paid stor-
age guarantees are gathered in StorageGroups with additional information used for the proof of
storage. StorageGroup only contains objects from the same container.

Beinganobjectpayload, StorageGroupmayhaveexpirationEpochsetwith__NEOFS__EXPIRATION_EPOCH
well-known attribute. When expired, StorageGroup will be ignored by InnerRing nodes during Data
Audit cycles and will be deleted by Storage Nodes.

Field Type Description

validation_data_size uint64 Total size of the payloads of objects in the storage
group

validation_hash Checksum Homomorphic hash from the concatenation of
the payloads of the storage groupmembers. The
order of concatenation is the same as the order of
the members in the members field.

expiration_epoch uint64 DEPRECATED. Last NeoFS epoch number of the
storage group lifetime

members ObjectID Strictly ordered list of storage groupmember
objects. Members MUST be unique

Neo Saint Petersburg Competence Center 159

NeoFS Technical Specification Revision: c57acefc

neo.fs.v2.subnet

Message SubnetInfo

NeoFS subnetwork description

Field Type Description

id SubnetID Unique subnet identifier. Missing ID is equivalent
to zero (default subnetwork) ID.

owner OwnerID Identifier of the subnetwork owner

neo.fs.v2.tombstone

Message Tombstone

Tombstone keeps record of deleted objects for a few epochs until they are purged from the NeoFS
network.

Field Type Description

expiration_epoch uint64 Last NeoFS epoch number of the tombstone
lifetime. It’s set by the tombstone creator
depending on the current NeoFS network settings.
A tombstone object must have the same
expiration epoch value in
__NEOFS__EXPIRATION_EPOCH attribute.
Otherwise, the tombstone will be rejected by a
storage node.

split_id bytes 16 byte UUID used to identify the split object
hierarchy parts. Must be unique inside a container.
All objects participating in the split must have the
same split_id value.

members ObjectID List of objects to be deleted.

Neo Saint Petersburg Competence Center 160

NeoFS Technical Specification Revision: c57acefc

Terms and definitions

Object An immutable piece of data with metadata in the form of a set of key-value headers. Object
has a globally unique identifier.

Glossary

ACL Access Control List. 12, 21

Alphabet nodes Inner Ring nodes that share keywith sidechain consensus nodes and send all NeoFS
relatedmultisigned transactions . 48

API Application Programming Interface. 9

CLI Command Line Interface. 96

dApp Decentralized Application. 9

EigenTrust EigenTrust algorithm is a reputationmanagement algorithm49 for peer-to-peer networks
. 32, 33, 87, 161

GAS Utility Token Neo Blockchain’s utility token . 12, 47, 49, 51, 52, 97

Global Trust the result of the EigenTrust algorithm is the trust in the network participant, which has
been obtained regarding all Local Trusts of all nodes . 33

HRW HRW stands for Rendezvous hashing50. It helps to achieve 3 goals:

1. Select nodes uniformly from thewhole netmap. Thismeans that every node has a chance
to be included in container nodes set.

2. Select nodes deterministically. Identical (netmap, storage policy) pair results in the same
placement set on every storage node.

3. Prioritize nodes providing better conditions.

Nodes havingmore space, better price or better rating are to be selectedwith higher probability.
Specific weighting algorithm is defined for NeoFS network as a whole and is beyond scope of
this document. See NeoFS HRW implementation51 for details . 88

49http://ilpubs.stanford.edu:8090/562/1/2002-56.pdf
50https://en.wikipedia.org/wiki/Rendezvous_hashing
51https://github.com/nspcc-dev/hrw

Neo Saint Petersburg Competence Center 161

http://ilpubs.stanford.edu:8090/562/1/2002-56.pdf
https://en.wikipedia.org/wiki/Rendezvous_hashing
https://github.com/nspcc-dev/hrw

NeoFS Technical Specification Revision: c57acefc

Local Trust trust of one node to another, calculated using only statistical information of their peer-
to-peer network interactions. The Subject and Object of such a trust are peer-to-peer nodes .
33, 161

Multiaddress Multiaddress52 is a format for encoding addresses from various well-established net-
work protocols. It has two forms:

1. a human-readable version to be used when printing to the user (UTF-8);

2. abinary-packedversion tobeused in storage, transmissionson thewire, andasaprimitive
in other formats

. 35

N3Main Net N3 Main Network Blockchain. See Neo Documentation53 . 11, 48

NEO Token Token representing a share of ownership in the NEO blockchain . 49, 51

Neo Virtual Machine NeoVM is a lightweight virtual machine for executing Neo smart contracts. As
the core component of Neo, NeoVM has Turing completeness and high consistency, which can
implement arbitrary execution logic and ensure consistent execution results of any node in dis-
tributed network, providing strong support for decentralized applications. See Neo Documen-
tation54 . 102

NeoFS NeoFS ExaggerativeObject File Storage. Also known as Neo File Storage . 9

NeoFS Node Computer systemwith at least following properties:

• Running relevant version of NeoFS software

• Has a NeoFS Network-wide unique identifier and a key pair

• Has good enough connectivity with other nodes

• Serves requests using NeoFS API protocol

. 9, 96, 99

RoleManagement contract nativeN3 contract thatmanages list of public keys for specific roles such
as StateValidator, Oracle, NeoFSAlphabet . 48

validator node In the NEO network, NEO holders can enroll themselves to be validators (consensus
node candidates), and then be voted as consensus nodes. The voting status of validators and
number of consensus nodes are stored in blockchain . 49

52https://multiformats.io/multiaddr/
53https://docs.neo.org/v3/docs/en-us/network/testnet.html
54https://docs.neo.org/docs/en-us/basic/neovm.html

Neo Saint Petersburg Competence Center 162

https://multiformats.io/multiaddr/
https://docs.neo.org/v3/docs/en-us/network/testnet.html
https://docs.neo.org/docs/en-us/basic/neovm.html

	Introduction
	Overview
	Background
	Technical Requirements
	Out of Scope
	Future Goals

	Architecture overview
	Design and components
	Epoch
	Network Map
	Storage Policy
	Filters
	Selectors
	Replicas
	Container Backup Factor

	Objects
	Large objects split
	Object Deletion
	Tombstone Object
	Containers
	Access Control Lists
	Basic ACL
	Extended ACL
	Bearer Token
	ACL check algorithm

	Reputation system
	Trust
	Algorithm
	Subjects and Objects of Trust in NeoFS

	Inner Ring Nodes
	Storage Nodes
	Address format
	Examples:

	Garbage Collector
	Invalid Objects check
	Marked Objects removal
	Object Expiration

	Notifications
	Object notifications

	Protocol gateways
	HTTP
	S3
	Access Box scheme

	sFTP

	Data Audit
	Storage Groups
	Data Audit cycle
	Data Audit Game
	Audit tasks distribution
	Data Audit session
	Prove-of-Retrievability
	Prove-of-Placement
	Prove-of-Data-Possession
	Hash check

	Blockchain components
	Role of blockcahin in the storage system
	Mainchain and sidechain
	Notary service
	NeoFS Sidechain Governance
	Alphabet contracts
	Alphabet Inner Ring nodes
	Alphabet contracts invocation
	Utility token distribution
	Changing sidechain validators
	Changing the Inner Ring list

	NeoFS Smart Contracts
	alphabet contract
	audit contract
	balance contract
	container contract
	neofs contract
	neofsid contract
	netmap contract
	processing contract
	proxy contract
	reputation contract
	subnet contract

	Balance transfer details encoding

	Reputation model
	Configuration
	Managers
	Defining a manager for a node

	Local Trust
	Subject and Object of a trust
	Calculating trust
	Transport

	Global Trust
	Subject and Object of a trust
	Calculating trust
	Transport

	Incentive model
	Data storage payments
	Basic income
	Data audit

	Service fees
	Container creation fee
	Audit result fee
	Inner Ring candidate fee
	Withdraw fee

	NeoFS API v2
	Nodes and their identification
	Requests and Responses
	Signing RPC messages and data structures
	Stable serialization
	Signature generation format
	Signature chaining in requests and responses
	Message body signature
	Meta header signature
	Verification header signature

	Container service signatures
	Object service and Session signatures
	neo.fs.v2.accounting
	Service ``AccountingService''
	Method Balance
	Message Decimal

	neo.fs.v2.acl
	Message BearerToken
	Message BearerToken.Body
	Message BearerToken.Body.TokenLifetime
	Message EACLRecord
	Message EACLRecord.Filter
	Message EACLRecord.Target
	Message EACLTable
	Emun Action
	Emun HeaderType
	Emun MatchType
	Emun Operation
	Emun Role

	neo.fs.v2.audit
	Message DataAuditResult

	neo.fs.v2.container
	Service ``ContainerService''
	Method Put
	Method Delete
	Method Get
	Method List
	Method SetExtendedACL
	Method GetExtendedACL
	Method AnnounceUsedSpace
	Message AnnounceUsedSpaceRequest.Body.Announcement
	Message Container
	Message Container.Attribute

	neo.fs.v2.lock
	Message Lock

	neo.fs.v2.netmap
	Service ``NetmapService''
	Method LocalNodeInfo
	Method NetworkInfo
	Method NetmapSnapshot
	Message Filter
	Message Netmap
	Message NetworkConfig
	Message NetworkConfig.Parameter
	Message NetworkInfo
	Message NodeInfo
	Message NodeInfo.Attribute
	Message PlacementPolicy
	Message Replica
	Message Selector
	Emun Clause
	Emun NodeInfo.State
	Emun Operation

	neo.fs.v2.object
	Service ``ObjectService''
	Method Get
	Method Put
	Method Delete
	Method Head
	Method Search
	Method GetRange
	Method GetRangeHash
	Message GetResponse.Body.Init
	Message HeaderWithSignature
	Message PutRequest.Body.Init
	Message Range
	Message SearchRequest.Body.Filter
	Message Header
	Message Header.Attribute
	Message Header.Split
	Message Object
	Message ShortHeader
	Message SplitInfo
	Emun MatchType
	Emun ObjectType

	neo.fs.v2.refs
	Message Address
	Message Checksum
	Message ContainerID
	Message ObjectID
	Message OwnerID
	Message Signature
	Message SignatureRFC6979
	Message SubnetID
	Message Version
	Emun ChecksumType
	Emun SignatureScheme

	neo.fs.v2.reputation
	Service ``ReputationService''
	Method AnnounceLocalTrust
	Method AnnounceIntermediateResult
	Message GlobalTrust
	Message GlobalTrust.Body
	Message PeerID
	Message PeerToPeerTrust
	Message Trust

	neo.fs.v2.session
	Service ``SessionService''
	Method Create
	Message ContainerSessionContext
	Message ObjectSessionContext
	Message RequestMetaHeader
	Message RequestVerificationHeader
	Message ResponseMetaHeader
	Message ResponseVerificationHeader
	Message SessionToken
	Message SessionToken.Body
	Message SessionToken.Body.TokenLifetime
	Message XHeader
	Emun ContainerSessionContext.Verb
	Emun ObjectSessionContext.Verb

	neo.fs.v2.status
	Message Status
	Message Status.Detail
	Emun CommonFail
	Emun Container
	Emun Object
	Emun Section
	Emun Session
	Emun Success

	neo.fs.v2.storagegroup
	Message StorageGroup

	neo.fs.v2.subnet
	Message SubnetInfo

	neo.fs.v2.tombstone
	Message Tombstone

	Terms and definitions
	Glossary

